## Quant: Chi-Square Test in SPSS

Introduction The aim of this analysis is to determine the association strength for the variables agecat and degree as well the major contributing cells through a chi-square analysis. Through the use of standardized residuals, it should aid in determining the cell contributions. Hypothesis Null: There is no basis of difference between the agecat and degree … Continue reading “Quant: Chi-Square Test in SPSS”

Introduction

The aim of this analysis is to determine the association strength for the variables agecat and degree as well the major contributing cells through a chi-square analysis. Through the use of standardized residuals, it should aid in determining the cell contributions.

Hypothesis

• Null: There is no basis of difference between the agecat and degree
• Alternative: There is are real differences between the agecat and degree

Methodology

For this project, the gss.sav file is loaded into SPSS (GSS, n.d.).  The goal is to look at the relationships between the following variables: agecat (Age category) and degree (Respondent’s highest degree).

To conduct a chi-square analysis, navigate through Analyze > Descriptive Statistics > Crosstabs.

The variable degree was placed in the “Row(s)” box and agecat was placed under “Column(s)” box.  Select “Statistics” button and select “Chi-square” and under the “Nominal” section select “Lambda”. Select the “Cells” button and select “Standardized” under the “Residuals” section. The procedures for this analysis are provided in video tutorial form by Miller (n.d.).  The following output were observed in the next four tables.

Results

Table 1: Case processing summary.

 Cases Valid Missing Total N Percent N Percent N Percent Degree * Age category 1411 99.4% 8 0.6% 1419 100.0%

From the total sample size of 1419 participants, 8 cases are reported to be missing, yielding a 99.4% response rate (Table 1).   Examining the cross tabulation, for the age groups 30-39, 40-49, 50-59, and 60-89 the standardized residual is far less than -1.96 or far greater than +1.96 respectively.  Thus, the frequencies between these two differ significantly.  Finally, for the 60-89 age group the standardized residual is less than -1.96, making these two frequencies differ significantly.  Thus, for all these frequencies, SPSS identified that the observed frequencies are far apart from the expected frequencies (Miller, n.d.).  For those significant standardized residuals that are negative is pointing out that the SPSS model is over predicting people of that age group with that respective diploma (or lack thereof).  For those significant standardized residuals that are positive is point out that the SPSS model is under-predicting people of that age group with a lack of a diploma.

Table 2: Degree by Age category crosstabulation.

 Age category Total 18-29 30-39 40-49 50-59 60-89 Degree Less than high school Count 42 33 36 20 112 243 Standardized Residual -.1 -2.8 -2.3 -2.7 7.1 High school Count 138 162 154 113 158 725 Standardized Residual .9 .2 -.2 .4 -1.2 Junior college or more Count 68 115 114 78 68 443 Standardized Residual -1.1 1.8 1.9 1.4 -3.7 Total Count 248 310 304 211 338 1411

Deriving the degrees of freedom from Table 2, df = (5-1)*(3-1) is 8.  However, none of the expected counts were less than five because the minimum expected count is 36.3 (Table 3) which is desirable.  The chi-squared value is 96.364 and is significance at the 0.05 level. Thus, the null hypothesis is rejected, and there is a statistically significant association between a person’s age category and diploma level.  This test doesn’t tell us anything about the directionality of the relationship.

Table 3: Chi-Square Tests

 Value df Asymptotic Significance (2-sided) Pearson Chi-Square 96.364a 8 .000 Likelihood Ratio 90.580 8 .000 Linear-by-Linear Association 23.082 1 .000 N of Valid Cases 1411 a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 36.34.

Table 4: Directional Measures

 Value Asymptotic Standard Errora Approximate Tb Approximate Significance Nominal by Nominal Lambda Symmetric .029 .013 2.278 .023 Degree Dependent .000 .000 .c .c Age category Dependent .048 .020 2.278 .023 Goodman and Kruskal tau Degree Dependent .024 .005 .000d Age category Dependent .019 .004 .000d a. Not assuming the null hypothesis. b. Using the asymptotic standard error assuming the null hypothesis. c. Cannot be computed because the asymptotic standard error equals zero. d. Based on chi-square approximation

Since there is a statistically significant association between a person’s age category and diploma level, the chi-square test doesn’t show how much these variables are related to each other. The lambda value (when we reject the null hypothesis) is 0.029; there is a 2.9% relationship between the two variables. Thus the relationship has a very weak effect (Table 4). Thus, 2.9% of the variance is accounted for, and there is nothing going on in here.

Conclusions

There is a statistically significant association between a person’s age category and diploma level.  According to the crosstabulation, the SPSS model is significantly over-predicting the number of people with less education than a high school diploma for the age groups of 20-59 as well as those with a college degree for the 60-89 age group.  This difference in the standard residual helped drive a large and statistically significant chi-square value. With a lambda of 0.029, it shows that 2.9% of the variance is accounted for, and there is nothing going on in here.

SPSS Code

CROSSTABS

/TABLES=ndegree BY agecat

/FORMAT=AVALUE TABLES

/STATISTICS=CHISQ CC LAMBDA

/CELLS=COUNT SRESID

/COUNT ROUND CELL.

References:

## Quant: Linear Regression in SPSS

Introduction

The aim of this analysis is to look at the relationship between a father’s education level (dependent variable) when you know the mother’s education level (independent variable). The variable names are “paeduc” and “maeduc.” Thus, the hope is to determine the linear regression equation for predicting the father’s education level from the mother’s education.

From the SPSS outputs the following questions will be addressed:

• How much of the total variance have you accounted for with the equation?
• Based upon your equation, what level of education would you predict for the father when the mother has 16 years of education?

Methodology

For this project, the gss.sav file is loaded into SPSS (GSS, n.d.).  The goal is to look at the relationships between the following variables: paeduc (HIGHEST YEAR SCHOOL COMPLETED, FATHER) and maeduc (HIGHEST YEAR SCHOOL COMPLETED, MOTHER). To conduct a linear regression analysis navigate through Analyze > Regression > Linear Regression.  The variable paeduc was placed in the “Dependent List” box, and maeduc was placed under “Independent(s)” box.  The procedures for this analysis are provided in video tutorial form by Miller (n.d.).  The following output was observed in the next four tables.

The relationship between paeduc and maeduc are plotted in a scatterplot by using the chart builder.  Code to run the chart builder code is shown in the code section, and the resulting image is shown in the results section.

Results

Table 1: Variables Entered/Removed

 Model Variables Entered Variables Removed Method 1 HIGHEST YEAR SCHOOL COMPLETED, MOTHERb . Enter a. Dependent Variable: HIGHEST YEAR SCHOOL COMPLETED, FATHER b. All requested variables entered.

Table 1, reports that for the linear regression analysis the dependent variable is the highest years of school completed for the father and the independent variable is the highest year of school completed by the mother.  No variables were removed.

Table 2: Model Summary

 Model R R Square Adjusted R Square Std. Error of the Estimate 1 .639a .408 .407 3.162 a. Predictors: (Constant), HIGHEST YEAR SCHOOL COMPLETED, MOTHER b. Dependent Variable: HIGHEST YEAR SCHOOL COMPLETED, FATHER

For a linear regression trying to predict the father’s highest year of school completed based on his wife’s highest year of school completed, the correlation is positive with a value of 0.639, which can only 0.408 of the variance explained (Table 2) and 0.582 of the variance is unexplained.  The linear regression formula or line of best fit (Table 4) is: y = 0.76 x + (2.572 years) + e.  The line of best fit essentially explains in equation form the mathematical relationship between two variables and in this case the father’s and mother’s highest education level.  Thus, if the mother has completed her bachelors’ degree (16th year), then this equation would yield (y = 2.572 years + 0.76 (16 years) + e = 14.732 years + e).  The e is the error in this prediction formula, and it exists because of the r2 value is not exactly -1.0 or +1.0.  The ANOVA table (Table 3) describes that this relationship between these two variables is statistically significant at the 0.05 level.

Table 3: ANOVA Table

 Model Sum of Squares df Mean Square F Sig. 1 Regression 6231.521 1 6231.521 623.457 .000b Residual 9045.579 905 9.995 Total 15277.100 906 a. Dependent Variable: HIGHEST YEAR SCHOOL COMPLETED, FATHER b. Predictors: (Constant), HIGHEST YEAR SCHOOL COMPLETED, MOTHER

Table 4: Coefficients

 Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) 2.572 .367 7.009 .000 HIGHEST YEAR SCHOOL COMPLETED, MOTHER .760 .030 .639 24.969 .000 a. Dependent Variable: HIGHEST YEAR SCHOOL COMPLETED, FATHER

The image below (Figure 1), is a scatter plot, which is plotting the highest year of school completed by the mother vs. the father along with the linear regression line (Table 4) and box plot images of each respective distribution.  There are more outliers in the husband’s education level compared to those of the wife’s education level, and the spread of the education level is more concentrated about the median for the husband’s education level. Figure 1: Highest year of school completed by the mother vs the father scatter plot with regression line and box plot images of each respective distribution.

Conclusion

There is a statistically significant relation between the husband’s and wife’s highest year of education completed.  The line of best-fit formula shows a moderately positive correlation and is defined as y = 0.76 x + (2.572 years) + e; which can only explain 40.8% of the variance, while 58.2% of the variance is unexplained.

SPSS Code

DATASET NAME DataSet1 WINDOW=FRONT.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT paeduc

/METHOD=ENTER maeduc

/CASEWISE PLOT(ZRESID) OUTLIERS(3).

STATS REGRESS PLOT YVARS=paeduc XVARS=maeduc

/OPTIONS CATEGORICAL=BARS GROUP=1 BOXPLOTS INDENT=15 YSCALE=75

/FITLINES LINEAR APPLYTO=TOTAL.

References:

## Quant: Statistical Significance

In quantitative research methodologies, meaningful results get reported and their statistical significance, confidence intervals and effect sizes (Creswell, 2014). If the results from a statistical test have a low probability of occurring by chance (5% or 1% or less) then the statistical test is considered significant (Creswell, 2014; Field, 2014; Huck, 2011).  Low statistical significance values usually try to protect against type I errors (Huck, 2011). Statistical significance test can have the same effect yet result in different values (Field, 2014).  Statistical significance on large samples sizes can be affected by small differences and can show up as significant, while in smaller samples large differences may be deemed insignificant (Field, 2014).  Statistically significant results allow the researcher to reject a null hypothesis but do not test the importance of the observations made (Huck, 2011).  Huck (2011) stated two main factors that could influence whether or not a result is statistically significant is the quality of the research question and research design.  This is why Creswell (2014) also stated confidence intervals and effect size. Confidence intervals explain a range of values that describe the uncertainty of the overall observation and effect size defines the strength of the conclusions made on the observations (Creswell, 2014).  Huck (2011) suggested that after statistical significance is calculated and the research can either reject or fail to reject a null hypothesis, effect size analysis should be conducted.  The effect size allows researchers to measure objectively the magnitude or practical significance of the research findings through looking at the differential impact of the variables (Huck, 2011; Field, 2014).  Field (2014), defines one way of measuring the effect size is through Cohen’s d: d = (Avg(x1) – Avg(x2))/(standard deviation).  There are multiple ways to pick a standard deviation for the denominator of the effect size equation: control group standard deviation, group standard deviation, population standard deviation or pooling the groups of standard deviations that are assuming there is independence between the groups (Field, 2014).   If d = 0.2 there is a small effect, d = 0.5 there is a moderate effect, and d = 0.8 or more there is a large effect (Field, 2014; Huck, 2011). Thus, this could be the reason why the statistical test yielded a statistically significant value, but further analysis with effect size could show that those statistically significant results do not explain much of what is happening in the total relationship.

Resources

• Creswell, J. W. (2014) Research design: Qualitative, quantitative and mixed method approaches (4th ed.). California, SAGE Publications, Inc. VitalBook file.
• Field, A. (2011) Discovering Statistics Using IBM SPSS Statistics (4th ed.). UK: Sage Publications Ltd. VitalBook file.
• Huck, S. W. (2013) Reading Statistics and Research (6th ed.). Pearson Learning Solutions. VitalBook file.

## Quant: Regression and Correlations

Through a regression analysis, it should be possible to predict the potential productivity based upon years of service, depending on two factors: (1) that the productivity assessment tool is valid and reliable (Creswell, 2014) and (2) we have a large enough sample size to conduct our analysis and be able to draw statistical inference of the population based on the sample data which has been collected (Huck, 2011). Assuming these two conditions are met, then regression analysis could be made on the data to create a prediction formula. Regression formulas are useful for summarizing the relationship between the variables in question (Huck, 2011). There are multiple types of regression all of them are tests of prediction: Linear, Multiple, Log-Linear, Quadratic, Cubic, etc. (Huck, 2011; Schumacker, 2014).  The linear regression is the most well-known because it uses basic algebra, a straight line, and the Pearson correlation coefficient to aid in stating the regression’s prediction strength (Huck, 2011; Schumacker, 2014).  The linear regression formula is: y = a + bx + e, where y is the dependent variable (in this case the productivity measure), x is the independent variable (years of service), a (the intercept) and b (the regression weight) are a constants that are to be defined through the regression analysis, and e is the regression prediction error (Field, 2013; Schumacker, 2014).  The sum of the errors should be equal to zero (Schumacker, 2014).

Linear regression models try to describe the relationship between one dependent and one independent variable, which are measured at the ratios or interval level (Schumacker, 2014).  However, other regression models are tested to find the best regression fit over the data.  Even though these are different regression tests, the goal for each regression model is to try to describe the current relationship between the dependent variable and the independent variable(s) and for predicting.  Multiple regression is used when there are multiple independent variables (Huck, 2011; Schumacker, 2014). Log-Linear Regression is using a categorical or continuously independent variable (Schumacker, 2014). Quadratic and Cubic regressions use a quadratic and cubic formula to help predict trends that are quadratic or cubic in nature respectively (Field, 2013).  When modeling predict potential productivity based upon years of service the regression with the strongest correlation will be used as it is that regression formula that explains the variance between the variables the best.   However, just because the regression formula can predict some or most of the variance between the variables, it will never imply causation (Field, 2013).

Correlations help define the strength of the regression formula in defining the relationships between the variables, and can vary in value from -1 to +1.  The closer the correlation coefficient is to -1 or +1; it informs the researcher that the regression formula is a good predictor of the variance between the variables.  The closer the correlation coefficient is to zero, indicates that there is hardly any relationship between the variable (Field, 2013; Huck, 2011; Schumacker, 2014).  A negative correlation could show that as the years of service increases the productivity measured is decreased, which could be caused by apathy or some other factor that has yet to be measured.  A positive correlation could show that as the years of service increases the productivity also measured increases, which could also be influenced by other factors that are not directly related to the years of service.  Thus, correlation doesn’t imply causation, but can help determine the percentage of the variances between the variables by the regression formula result, when the correlation value is squared (r2) (Field, 2013).

References

• Creswell, J. W. (2014) Research design: Qualitative, quantitative and mixed method approaches (4th ed.). California, SAGE Publications, Inc. VitalBook file.
• Field, A. (2013) Discovering Statistics Using IBM SPSS Statistics (4th ed.). UK: Sage Publications Ltd. VitalBook file.
• Huck, S. W. (2011) Reading Statistics and Research (6th ed.). Pearson Learning Solutions. VitalBook file.
• Schumacker, R. E. (2014) Learning statistics using R. California, SAGE Publications, Inc, VitalBook file.