Business Intelligence: Compelling Topics

This post discusses the most compelling topics in Business Intelligence.


Departments are currently organized in a silo. Thus, their information is in silo systems, which makes it difficult to leverage that information across the company.  When we employ a data warehouse, which is a central database that contains a collection of decision-related internal and external sources of data, it can aid in the data analysis for the entire company (Ahlemeyer-Stubbe & Coleman, 2014). When we build a multi-level Business Intelligence (BI) system on top of a centralized data warehouse, we no longer have silo data systems, and thus, can make a data-driven decision.  Thus, to support data-driven decision while moving away from a silo department kept data to a centralized data warehouse, Curry,  Hasan, and O’Riain (2012) created a system that shows results from the hospital centralized data warehouse at different levels of the company, as the organization level (stakeholders are executive members, shareholders, regulators, suppliers, consumers), the functional level (stakeholders are functional managers, organization manager), and the individual level (stakeholders are the employees).  Data may be centralized, but specialized permissions on data reports can exist on a multi-level system.

The types of data that exist and can be stored in a centralized data warehouse are: Real-time data: data that reveals events that are happening immediately, Lag information: information that explains events that have recently just happened; and Lead information: information that helps predict events into the future based off of lag data, like regression data, forecasting model output (based off of Laursen & Thorlund, 2010).  All with the goal of helping decision makers if certain Target Measures are met.  Target measures are used to improve marketing efforts through tracking measures like ROI, NVP, Revenue, lead generation, lag generations, growth rates, etc. (Liu, Laguna, Wright, & He, 2014).

Decision Support Systems (DSS) were created before BI strategies.  A DSS helps execute the project, expand the strategy, improve processes, and improves quality controls in a quickly and timely fashion.  Data warehouses’ main role is to support the DSS (Carter, Farmer, & Siegel, 2014).  Unfortunately, the talks above about data types and ways to store data to enable data-driven decisions it doesn’t explain the “how,” “what,” “when,” “where,” “who”, and “why.”  However, a strong BI strategy is imperative to making this all work.  A BI strategies can include, but is not limited to data extraction, data processing, data mining, data analysis, reporting, dashboards, performance management, actionable decisions, etc. (Fayyad, Piatetsky-Shapiro, & Smyth, 1996; Padhy, Mishra, & Panigrahi, 2012; McNurlin, Sprague,& Bui, 2008).  This definition along with the fact the DSS is 1/5 principles to BI suggest that DSS was created before BI and that BI is a more new and holistic view of data-driven decision making.

But, what can we do with a strong BI strategy? Well with a strong BI strategy we can increase a company’s revenue through Online profiling.  Online profiling is using a person’s online identity to collect information about them, their behaviors, their interactions, their tastes, etc. to drive a targeted advertising (McNurlin et al., 2008).  Unfortunately, the fear comes when the end-users don’t know what the data is currently being used for, what data do these companies or government have, etc.  Richards and King (2014) and McEwen, Boyer, and Sun (2013), expressed that it is the flow of information, and the lack of transparency is what feeds the fear of the public. McEwen et al. (2013) did express many possible solutions, one which could gain traction in this case is having the consumers (end-users) know what variables is being collected and have an opt-out feature, where a subset of those variables stay with them and does not get transmitted.



  • Ahlemeyer-Stubbe, Andrea, Shirley Coleman. (2014). A Practical Guide to Data Mining for Business and Industry, 1st Edition. [VitalSource Bookshelf Online]. Retrieved from
  • Carter, K. B., Farmer, D., & Siegel, C. (2014-08-25). Actionable Intelligence: A Guide to Delivering Business Results with Big Data Fast!, 1st Edition. [VitalSource Bookshelf Online]. Retrieved from
  • Curry, E., Hasan, S., & O’Riain, S. (2012, October). Enterprise energy management using a linked dataspace for energy intelligence. In Sustainable Internet and ICT for Sustainability (SustainIT), 2012 (pp. 1-6). IEEE.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37. Retrieved from:
  • Laursen, G. H. N., & Thorlund, J. (2010) Business Analytics for Mangers: Taking Business Intelligence Beyond Reporting. Wiley & SAS Business Institute.
  • Liu, Y., Laguna, J., Wright, M., & He, H. (2014). Media mix modeling–A Monte Carlo simulation study. Journal of Marketing Analytics, 2(3), 173-186.
  • McEwen, J. E., Boyer, J. T., & Sun, K. Y. (2013). Evolving approaches to the ethical management of genomic data. Trends in Genetics, 29(6), 375-382.
  • McNurlin, B., Sprague, R., & Bui, T. (09/2008). Information Systems Management, 8th Edition. [VitalSource Bookshelf Online]. Retrieved from
  • Padhy, N., Mishra, D., & Panigrahi, R. (2012). The survey of data mining applications and feature scope. arXiv preprint arXiv:1211.5723.  Retrieved from:
  • Richards, N. M., & King, J. H. (2014). Big data ethics. Wake Forest L. Rev., 49, 393

Business Intelligence: Predictions Followup

The last post discussed the future of data mining. For this post, I will expand my opinion on what business intelligence (BI) is moving toward in the future.

  • Potential Opportunities:

o    Health monitoring.  Currently, smart watches are tracking our heart rate, steps, standing time, climbing stairs, siting time, heart beats, workouts, biking, sleep, etc.  But, what if we had a device that measured daily our chemicals in our blood, that is no longer as painful as pricking your finger if you are diabetic.  This, the technology could not only measure your blood chemical makeup but could send alerts to EMT and doctors if there is a dangerous imbalance of chemicals in your blood (Carter et al., 2014).  This would require a strong BI program across emergency responders, individuals, and doctors.

o    As Moore’s law of computational speed moves forward in time, the more chances are companies able to interpret real-time data and produce lead information which can drive actionable data-driven decisions. Companies can finally get answers to strategic business questions in minutes as well (Carter et al., 2014).

o    Both internal data (corporate data) and external data (competitor analysis, costumer analysis, social media, affinity and sentiment analysis), will be reported to senior leaders and executives who have the authority to make decisions on behalf of the company on a frequent basis.  These issues may show up in a dashboard, with x number of indicators/metrics as successfully implemented in a case study of a hospital (Topaloglou & Barone, 2015).

  • Potential Pitfalls:

o    Tools for threat detection, like those being piloted in New York City, could have an increased level of discrimination (Carter, Farmer, & Siegel, 2014). As big data analytics is being used to do facial recognition of photographs and live video to identify threats, it can lead to more racial profiling if the knowledge fed into the system as a priori has elements of racial profiling.  This could lead to a bias in reporting, track higher levels of a particular demographic, and the fact that past performance doesn’t indicate the future.

o    Data must be validated before it is published onto a data warehouse.  Due to the low data volatility feature of data warehouses, we need to ensure that the data we receive is correct, thus expected value thresholds must be set to capture errors before they are entered.  Wrong data in, means wrong data analysis, and wrong data-drove decisions.  An example of expected value thresholds could be that earth’s temperature cannot exceed 500K at the surface.

o    Amplified customer experience.  As BI incorporates social media to gauge what is going on in the minds of their customer, if something were to go viral that could hurt the company, it can be devastating for the company.  Essentially we are giving the customer an amplified voice.  This can be rumors of software, hardware leaks as what happens for every Apple iPhone generation/release, which can put current proprietary information into the hands of their competitors.  A nasty comment or post that gets out of control on a social media platform, to celebrity boycotts.  Though, the opportunity here lies in receiving key information on how to improve their products, identify leakers of information, and settle nasty rumors, issues, or comments.

  • Potential Threats:

o    Loss of data through hackers, which are aiming to steal someone’s identity.  Firewalls must be tighter than ever, and networks must be more secure than ever as a company goes into a centralized data warehouse.  Data warehouses are vital for BI initiatives, but if HR data is located in the warehouse, (for example to help HR identify likelihood measures of disgruntled employees to aid in their retention efforts) then if a hacker were to get a hold of that data, thousands of people information can be compromised.  This is nothing new, but this is a potential threat that must be mitigated as we proceed into BI systems.  This can not only apply to people data but company proprietary data.

o    Consumer advertisement blitz. If companies use BI to blast their customers with ads in hopes to better market to people and use item affinity analysis, to send coupons and attract more sales and higher revenues.  There is a personal example here for me:  XYZ is a clothing store, when I moved to my first house, the old owner never switched their information in their database.  But, since they were a frequent buyer and those magazines, coupons, flyers, and sales were working on the old owner of the house, they kept getting blasted with marketing ads.  When I moved in, I got a magazine every two days.  It was a waste of paper and made me less likely to shop there.  Eventually, I had enough and called customer service.  They resolved the issue, but it took six weeks after that call, for my address to be removed from their marketing and customer database.  I haven’t shopped there since.

o    Informational overload.  As companies go forward into implementing BI systems, they must meet with the entire multi-level organization to find out their data needs.  Just because we have the data, doesn’t mean we should display it.  The goal is to find the right amount of key success factors, key performance indicators, and metrics, to help out the decision makers at all different levels.  Complicating this part up can compromise the adoption of BI in the organization and will be seen as a waste of money rather than a tool that could help them in today’s competitive market.  This is such a hard line to walk on, but it is one of the biggest threats.  It was realized in the hospital case study (Topaloglou & Barone, 2015) and therefore mitigated for through extensive planning, buy-in, and documentation.



Business Intelligence: Predictions

According to the Association of Professional Futurists (n.d.), “A professional futurist is a person who studies the future in order to help people understand, anticipate, prepare for and gain advantage from coming changes. It is not the goal of a futurist to predict what will happen in the future. The futurist uses foresight to describe what could happen in the future and, in some cases, what should happen in the future.” In my opinion, I will discuss what the future might hold for Data Mining, Knowledge Management and comprehensive BI program and strategy.

The future of …

  • Data mining:

o    Web structure mining (studying the web structure of web pages) and web usage analysis (studying the usage of web pages) will become more prominent in the future.  Victor and Rex (2016) stated that web mining differs from traditional data mining by scale (web information is much larger in number, making 10M web pages seem like it’s too small), access (web information is mostly public, whereas traditional data could be private), and structure (web pages have unstructured, and semi-structured data, whereas traditional data mining, has some explicit level of structure).  The structure of a website can contain: Page Rank, Page number, Damping factor, Number of pages, out-links, in-links, etc.  Your page is considered an authoritative piece if there are many in-links, or it can be considered a hub if it has many out-links, and this helps define page rank and structure of the website (Victor & Rex, 2016).  But, page rank is too trivial of calculation.  One day we will be able to not only know a page rank of a website, but learn its domain authority, page authority, and domain validity, which will help define how much value a particular site can bring to the person.  If Google were to adopt these measures, we could see

  • Data mining’s link to knowledge management (KM):

o    A move towards the away from KM tools and tool set to seeing knowledge as being embedded into as many processes and people as possible (Ferguson, 2016). KM relies on sharing, and as we move away from tools, processes will be setup to allow this sharing to happen.  Sharing occurs more frequently with an increase in interactive and social environments (Ferguson, 2016).  Thus, internal corporate social media platforms may become the central data warehouse, hosting all kinds of knowledge.  The issue and further research need to go into this, is how do we more people engaged on a new social media platform to eventually enable knowledge sharing. Currently, forums, YouTube, and blogs are inviting, highly inclusive environments that share knowledge, like how to solve a particular issue (evident by YouTube video tutorials).  In my opinion, these social platforms or methods of sharing, show the need for a more social, inclusive, and interactive environment needs to be for knowledge sharing to happen more organically.

o    IBM (2013), shows us a glimpse of how knowledge management from veteran police officers, crime data stored in a crime data warehouse, the power of IBM data mining, can be to identifying criminals.  Mostly criminals commit similar crimes with similar patterns and motives.  The IBM tools augment officer’s knowledge, by narrowing down a list of possible suspects of crime down to about 20 people and ranking them on how likely the suspects committed this new crime.  This has been used in Miami-Dade County, the 7th largest county in the US, and a tool like this will become more widespread with time.

  • Business Intelligence (BI) program and strategy:

o    Potential applications of BI and strategy will go into the health care industry.  Thanks to ObamaCare (not being political here), there will be more data coming in due to an increase in patients having coverage, thus more chances to integrate: hospital data, insurance data, doctor diagnosis, patient care, patient flow, research data, financial data, etc. into a data warehouse to run analytics on the data to create beneficial data-driven decisions (Yeoh, & Popovič, 2016; Topaloglou & Barone, 2015).

o    Potential applications of BI and strategy will affect supply chain management.  The Boeing Dreamliner 787, has outsourced 30% of its parts and components, and that is different to the current Boeing 747 which is only 5% outsourced (Yeoh, & Popovič, 2016).  As more and more companies increase their outsourcing percentages for their product mix, the more crucial is capturing data on fault tolerances on each of those outsourced parts to make sure they are up to regulation standards and provide sufficient reliability, utility, and warranty to the end customer.  This is where tons of money and R&D will be spent on in the next few years.


  • Ferguson, J. E. (2016). Inclusive perspectives or in-depth learning? A longitudinal case study of past debates and future directions in knowledge management for development. Journal of Knowledge Management, 20(1).
  • IBM (2013). Miami-Dade Police Department: New patterns offer breakthroughs for cold cases. Smarter Planet Leadership Series.  Retrieved from
  • Topaloglou, T., & Barone, D. (2015) Lessons from a Hospital Business Intelligence Implementation. Retrieved from
  • Victor, S. P., & Rex, M. M. X. (2016). Analytical Implementation of Web Structure Mining Using Data Analysis in Educational Domain. International Journal of Applied Engineering Research, 11(4), 2552-2556.
  • Yeoh, W., & Popovič, A. (2016). Extending the understanding of critical success factors for implementing business intelligence systems. Journal of the Association for Information Science and Technology, 67(1), 134-147.

Business Intelligence: OLAP

This post will explain the relationship and the difference between online analytical processing (OLAP) systems and customer relationship management (CRM) systems within a business intelligence (BI) program. Also this post will explain how this relationship bolsters an organization’s marketing efforts.

Within a Business Intelligence (BI) program online analytical processing (OLAP) and customer relationship management (CRMs) are both applications have strategic uses for the company and are dependent on the data warehouse to help analyze multidimensional datasets stored in them to provide data-driven solutions to queries. They are both systems that require data analytics to turn all the multidimensional data into insightful information. OLAP’s multidimensional view of the data warehouse data sets can occur because it is mapped onto n-dimensional data cubes, where data can then be easily rolled up, drilled down, slice and dice, and pivot (Conolly & Begg, 2014). OLAP can have many applications outside of customer relationships.  Thus, OLAP is more versatile compared to CRMS, because CRMs are more targeted/focused with their approach, analysis of the customer relationship to the company/product.  CRMs main goal is to analyze internal and external data stored in the data warehouse, to come up with insights like “predicted affinity to buy” of a customer, the “cost or profit” of a customer, “prediction of future customer behavior”, etc. (Ahlemeyer-Stubbe & Shirley, 2014).  The information gained from the CRM can empower employees at the company on a customer’s affinity towards a product to either sell similar items or items of the result in a market basket analysis.

OLAP is the online analytical processing application, which allows people to examine data in real time from different points of view in aid to driving more data-driven decisions (McNurlin et al., 2008).  With OLAP, computers can now make what-if analysis and goal-based decisions using data. The key ability of OLAPs systems are to help answer the “Why?” question, as well as the typical “Who?” and “What?” questions (Conolly & Begg, 2014).  Connolly and Begg (2014) further explain that OLAP is a specialized implementation of SQL. Unfortunately, data queried is assumed to be static and unchanging.  Hence, the low volatile aspect of a data warehouse, with multidimensional databases is ideal for OLAP apps.  They value of the data warehouse does not come from just storing the right kind of data, but through making and conducting analysis, to solve queries that will in the end help make data driven decisions that are the best for the company.  According to Conolly & Begg (2014), OLAP tools have been used in studying the effectiveness of marking campaigns, product sales forecasting, and capacity planning.  However, it is of the opinion of Conolly & Begg (2014) that data mining tools can surpass the capabilities of OLAP tools.

CRMs, on the other hand, focuses a wide range of concepts revolving how companies store, capture and analyze customer, vendor, and partner relationship data. Information stored in CRMs could be interactions with customers, vendors or partners, which allow the company to gain insights based on previous interactions and could even be grouped/associated into different customer segments, market basket analysis, etc. (Ahlemeyer-Stubbe & Shirley, 2014). CRMs can assist in real time with making data-driven decisions with respects to a company’s customers (Mcnurlin, Sprague, & Bui, 2008).  The goal is to use the current data, to help the company build more optimal communications and relationships with it customers, vendors or partners.  Both internal and external data of the company is usually added to the data warehouse for the CRM. Through the use of the internet, companies can study more about their customers and their noncustomers, to aid a company to become more customer centric (McNurlin et al., 2008).  McNurlin et al. (2008) stated a case study with Wachovia Bank purchasing a pay-by-use CRM system from  After the system was set up within six weeks, sales reps had 30 more hours to use on selling more bank services, and managers can use the data that was collected by the CRM to tell the sales reps which customers would have the highest yield.


Business Intelligence: Decision Support Systems

This post explains the relationship and the difference between Decision Support Systems (DSS) and business intelligence (BI) systems in a manufacturing organization. It also, includes a real-world example of this relationship.

Many years ago a measure of Business Intelligence (BI) systems was on how big the data warehouse was (McNurlin, Sprague,& Bui, 2008).   This measure made no sense, as it’s not all about the quantity of the data but the quality of the data.  A lot of bad data in the warehouse means that it will provide a lot of bad data-driven decisions. Both BI and Decision Support Systems (DSS) help provide data to support data-driven decisions.  However, McNurlin et al. (2008) state that a DSS is one of five principles of BI, along with data mining, executive information systems, expert systems, and agent-based modeling.

  • A BI strategies can include, but is not limited to data extraction, data processing, data mining, data analysis, reporting, dashboards, performance management, actionable decisions, etc. (Fayyad, Piatetsky-Shapiro, & Smyth, 1996; Padhy, Mishra, & Panigrahi, 2012; and McNurlin et al., 2008). This definition along with the fact the DSS is 1/5 principles to BI suggest that DSS was created before BI and that BI is a more new and holistic view of data-driven decision making.
  • A DSS helps execute the project, expand the strategy, improve processes, and improves quality controls in a quickly and timely fashion. Data warehouses’ main role is to support the DSS (Carter, Farmer, & Siegel, 2014).  The three components of a DSS are Data Component (comprising of databases, or data warehouse), Model Component (comprising of a Model base) and a dialog component (Software System, which a user can interact with the DSS) (McNurlin et al., 2008).

McNurlin et al (2008) state a case study, where Ore-Ida Foods, Inc. had a marketing DSS to support its data-driven decisions by looking at the: data retrieved (internal data and external market data), market analysis (was 70% of the use of their DSS, where data was combined, and relationships were discovered), and modeling (which is frequently updated).  The modeling offered great insight for the marketing management.  McNurlin et al. (2008), emphasizes that DSS tend to be defined, but heavily rely on internal data with little or some external data and that vibrational testing on the model/data is rarely done.

The incorporation of internal and external data into the data warehouse helps both BI strategies and DSS.  However, the one thing that BI strategies provide that DSS doesn’t is “What is the right data that should be collected and presented?” DSS are more of the how component, whereas BI systems generate the why, what, and how, because of their constant feedback loop back into the business and the decision makers.  This was seen in a hospital case study and was one of the main key reasons why it succeeded (Topaloglou & Barone, 2015).  As illustrated in the hospital case study, all the data types were consolidated to a unifying definition and type and had a defined roles and responsibilities assigned to it.  Each data entered into the data warehouse had a particular reason, and that was defined through interviews will all different levels of the hospital, which ranged from the business level to the process level, etc.

BI strategies can affect supply chain management in the manufacturing setting.  The 787-8, 787-9, and 787-10 Boeing Dreamliners have outsourced ~30% of its parts and components or more, this approach to outsourcing this much of a product mix is new since the current Boeing 747 is only ~5% outsourced (Yeoh, & Popovič, 2016).  As more and more companies increase their outsourcing percentages for their product mix, the more crucial it is to capture data on fault tolerances on each of those outsourced parts.  Other things that BI data could be used is to make decisions on which supplier to keep or not keep.  Companies as huge as Boeing can have multiple suppliers for the same part, if in their inventory analysis they find an unusually larger than average variance in the performance of an item: (1) they can either negotiate a lower price to overcompensate a larger than average variance, or (2) they could all together give the company a notice that if they don’t lower that variance for that part they will terminate their contract.  Same things can apply with the auto manufacturing plants or steel mills, etc.



Business Intelligence: Data Mining

When you think about business intelligence (BI), the first thing that probably comes to mind is data. However, all of those BI solutions use technology. This post discusses how does the data mining approach and concept flow to BI solutions and the enterprise level of an organization’s information technology (IT) effort.

Data mining is just a subset of the knowledge discovery process (or concept flow of Business Intelligence), where data mining provides the algorithms/math that aid in developing actionable data-driven results (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). It should be noted that success has much to do with the events that lead to the main event as it does with the main event.  Incorporating data mining processes into Business Intelligence, one must understand the business task/question behind the problem, properly process all the required data, analyze the data, evaluate and validate the data while analyzing the data, apply the results, and finally learn from the experience (Ahlemeyer-Stubbe & Coleman, 2014). Conolly and Begg (2014), stated that there are four operations of data mining: predictive modeling, database segmentation, link analysis, and deviation detection.  Fayyad et al. (1996), classifies data mining operations by their outcomes: prediction and descriptive.

It is crucial to understand the business task/question behind the problem you are trying to solve.  The reason why is because some types of business applications are associated with particular operations like marketing strategies use database segmentation (Conolly & Begg, 2014).  However, any of the data mining operations can be implemented for any business application, and many business applications can use multiple operations.  Customer profiling can use database segmentation first and then use predictive modeling next (Conolly & Begg, 2014). By thinking outside of the box about which combination of operations and algorithms to use, rather than using previously used operations and algorithms to help meet the business objectives, it could generate even better results (Minelli, Chambers, & Dhiraj, 2013).

A consolidated list (Ahlemeyer-Stubbe & Coleman, 2014; Berson, Smith, & Thearling 1999; Conolly & Begg, 2014; Fayyad et al., 1996) of the different types of data mining operations, algorithms and purposes are listed below.

  • Prediction – “What could happen?”
    • Classification – data is classified into different predefined classes
      • C4.5
      • Chi-Square Automatic Interaction Detection (CHAID)
      • Support Vector Machines
      • Decision Trees
      • Neural Networks (also called Neural Nets)
      • Naïve Bayes
      • Classification and Regression Trees (CART)
      • Bayesian Network
      • Rough Set Theory
      • AdaBoost
    • Regression (Value Prediction) – data is mapped to a prediction formula
      • Linear Regression
      • Logistic Regression
      • Nonlinear Regression
      • Multiple linear regression
      • Discriminant Analysis
      • Log-Linear Regression
      • Poisson Regression
    • Anomaly Detection (Deviation Detection) – identifies significant changes in the data
      • Statistics (outliers)
  • Descriptive – “What has happened?”
    • Clustering (database segmentation) – identifies a set of categories to describe the data
      • Nearest Neighbor
      • K-Nearest Neighbor
      • Expectation-Maximization (EM)
      • K-means
      • Principle Component Analysis
      • Kolmogorov-Smirnov Test
      • Kohonen Networks
      • Self-Organizing Maps
      • Quartile Range Test
      • Polar Ordination
      • Hierarchical Analysis
    • Association Rule Learning (Link Analysis) – builds a model that describes the data dependencies
      • Apriori
      • Sequential Pattern Analysis
      • Similar Time Sequence
      • PageRank
    • Summarization – smaller description of the data
      • Basic probability
      • Histograms
      • Summary Statistics (max, min, mean, median, mode, variance, ANOVA)
  • Prescriptive – “What should we do?” (an extension of predictive analytics)
    • Optimization
      • Decision Analysis

Finally, Ahlemeyer-Stubbe and Coleman (2014) stated that even though there are a ton of versatile data mining software available that would do any of the abovementioned operations and algorithms; a good data mining software would be deployable across different environments and include tools for data prep and transformation.


Business Intelligence: Corporate Planning

The connection of business intelligence (BI) and corporate planning is in its infancy stage. This post will discuss how can BI play a bigger role in corporate planning. Remember, a small, medium, or large organization deals with planning differently, so BI solutions are not a one-size-fits-all. Also, this post addresses how can BI include the emerging premise of knowledge management (KM), and how do both support corporate planning.

Corporate Planning

The main difference between business planning and corporate planning is the actors.  They both are defining strategies that will help the meet the business goals and objectives.  However, business planning is describing how the business will do it, through focusing on business operations, marketing, and products and services (Smith, n.d).  Meanwhile, corporate planning is describing how the employees will do it, through focusing on staff responsibilities and procedures (Smith, n.d.).  Smith (n.d.) implied that corporate planning will succeed if it is aligned with the company’s strategy and missions, drawing on the strengths and improving on its weaknesses. A successful and realistic corporate and business plan can help the company succeed.  Business Intelligence can help in creating these plans.  In order to make the right plans, we must make better decisions that help the company out, and data-driven decisions (through Business Intelligence).  Business Intelligence, will help provide answers to questions much faster and quite easily, make better use of the corporate time, and finally aid in making improvements for the future (Carter, Farmer, & Siegel, 2014).

A small, medium, or large organization deals with planning differently, so BI solutions are not a one-size-fits-all.  Small companies have the freedom, creativity, motivation, and flexibility that large companies lack (McNurlin, Sprague, & Bui, 2008).  Large companies have the economies of scales and knowledge that small companies do not (McNurlin et al., 2008).  Large companies are beginning to advocate centralized corporate planning yet decentralized execution, which is a similar structure of a medium size company (McNurlin et al., 2008).  Thus, medium size companies have the benefits of both large and small companies, but also the disadvantages of both.  Unfortunately, a huge drawback on large organizations is a fear of collaboration and tightly holding onto their proprietary information (Carter et al., 2014). The issues of holding tightly to proprietary information and lack of collaboration is not conducive for a solid Knowledge Management nor Business Intelligence plan.

Business Intelligence

Business Intelligence uses data to create information that helps with data-driven decisions, which can be especially important for corporate planning.  Thus, we can reap the benefits of Business Intelligence to make data-driven decisions, if we balance the needs of the company, corporate vision, and the size of the company to help in choosing which models the company should use.  A centralized model is when one team in the entire corporation owns all the data and provides all the needed analytical services (Minelli, Chambers, & Dhiraj, 2013).  A decentralized model of Business Intelligence is where each business function owns its data infrastructure and a team of data scientists (Minelli et al., 2013).  Finally, Minelli et al. (2013) defined that a federated model is where each function is allowed to access the data to make data-driven decisions, but also ensures that it is aligned to a centralized data infrastructure.

Knowledge Management

McNurlin et al. (2008), defines knowledge management as managing the transition between two states of knowledge, tacit (information that is privately kept in one’s mind) and explicit knowledge (information that is made public, which is articulated and codified). We need to discover the key people who have the key knowledge, which will aid in knowledge sharing to help benefit the company.  Knowledge management can rely on technology to be captured and share appropriately such that it can be used to sustain the individual and sustain the business performance (McNurlin et al., 2008).

Knowledge management can also include domain knowledge (knowledge of a particular field or subject).  The inclusion of domain knowledge into a data mining, which is a component of Business Intelligence System has aided in pruning association rules to help extract meaningful data to aid in developing data-driven decisions (Cristina, Garcia, Ferraz, & Vivacqua, 2009).  In this particular study, engineers helped to build a domain understanding to interpret the results as well as steer the search of specific if-then rules, which helped to find more significant patterns in the data (Cristina et al. 2009).

The addition of domain experts helped captured tacit knowledge and transformed it into explicit knowledge, which was then used to find significant patterns in the data that was collected and mined through.  This eventually leads to a more manageable set of information with high significance to the company to which data-driven decisions can be made to support the corporate planning. Thus, knowledge management can be an integral part of Business Intelligence.  Finally, Business Intelligence uses data to create information that when introduced with experience of the employees (through knowledge management) it can then create explicit knowledge, which can provide more meaningful data-driven decisions than if one were to focus on a Business Intelligence Systems alone.

The effectiveness of capturing and adding domain knowledge into a company’s Business Intelligence System depends on the quality of employees in the company and their willingness to share that knowledge.  At the end of the day, a corporate plan that focuses on staff responsibilities and procedures revolving both in Business Intelligence and Knowledge Management will gain more insights and a higher return on investment that will eventually feed back into the corporate and business plans.


  • Carter, K. B., Farmer, D., & Siegel C., (2014). Actionable Intelligence: A Guide to Delivering Business Results with Big Data Fast!. John Wiley & Sons P&T. VitalBook file.
  • Cristina, A., Garcia, B., Ferraz, I., & Vivacqua, A. S. (2009). From data to knowledge mining.
  • McNurlin, B., Sprague, R., Bui, T. (2008). Information Systems Management, 8th Edition. Pearson Learning Solutions. VitalBook file.
  • Minelli, M., Chambers, M., and Dhiraj A. (2013). Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today’s Businesses. John Wiley & Sons P&T. VitalBook file.
  • Smith, C. (n.d.) The difference between business planning and corporate planning. Small Business Chron. Retrieved from