Business Intelligence: Corporate Planning

The connection of business intelligence (BI) and corporate planning is in its infancy stage. This post will discuss how can BI play a bigger role in corporate planning. Remember, a small, medium, or large organization deals with planning differently, so BI solutions are not a one-size-fits-all. Also, this post addresses how can BI include the emerging premise of knowledge management (KM), and how do both support corporate planning.

Advertisements

Corporate Planning

The main difference between business planning and corporate planning is the actors.  They both are defining strategies that will help the meet the business goals and objectives.  However, business planning is describing how the business will do it, through focusing on business operations, marketing, and products and services (Smith, n.d).  Meanwhile, corporate planning is describing how the employees will do it, through focusing on staff responsibilities and procedures (Smith, n.d.).  Smith (n.d.) implied that corporate planning will succeed if it is aligned with the company’s strategy and missions, drawing on the strengths and improving on its weaknesses. A successful and realistic corporate and business plan can help the company succeed.  Business Intelligence can help in creating these plans.  In order to make the right plans, we must make better decisions that help the company out, and data-driven decisions (through Business Intelligence).  Business Intelligence, will help provide answers to questions much faster and quite easily, make better use of the corporate time, and finally aid in making improvements for the future (Carter, Farmer, & Siegel, 2014).

A small, medium, or large organization deals with planning differently, so BI solutions are not a one-size-fits-all.  Small companies have the freedom, creativity, motivation, and flexibility that large companies lack (McNurlin, Sprague, & Bui, 2008).  Large companies have the economies of scales and knowledge that small companies do not (McNurlin et al., 2008).  Large companies are beginning to advocate centralized corporate planning yet decentralized execution, which is a similar structure of a medium size company (McNurlin et al., 2008).  Thus, medium size companies have the benefits of both large and small companies, but also the disadvantages of both.  Unfortunately, a huge drawback on large organizations is a fear of collaboration and tightly holding onto their proprietary information (Carter et al., 2014). The issues of holding tightly to proprietary information and lack of collaboration is not conducive for a solid Knowledge Management nor Business Intelligence plan.

Business Intelligence

Business Intelligence uses data to create information that helps with data-driven decisions, which can be especially important for corporate planning.  Thus, we can reap the benefits of Business Intelligence to make data-driven decisions, if we balance the needs of the company, corporate vision, and the size of the company to help in choosing which models the company should use.  A centralized model is when one team in the entire corporation owns all the data and provides all the needed analytical services (Minelli, Chambers, & Dhiraj, 2013).  A decentralized model of Business Intelligence is where each business function owns its data infrastructure and a team of data scientists (Minelli et al., 2013).  Finally, Minelli et al. (2013) defined that a federated model is where each function is allowed to access the data to make data-driven decisions, but also ensures that it is aligned to a centralized data infrastructure.

Knowledge Management

McNurlin et al. (2008), defines knowledge management as managing the transition between two states of knowledge, tacit (information that is privately kept in one’s mind) and explicit knowledge (information that is made public, which is articulated and codified). We need to discover the key people who have the key knowledge, which will aid in knowledge sharing to help benefit the company.  Knowledge management can rely on technology to be captured and share appropriately such that it can be used to sustain the individual and sustain the business performance (McNurlin et al., 2008).

Knowledge management can also include domain knowledge (knowledge of a particular field or subject).  The inclusion of domain knowledge into a data mining, which is a component of Business Intelligence System has aided in pruning association rules to help extract meaningful data to aid in developing data-driven decisions (Cristina, Garcia, Ferraz, & Vivacqua, 2009).  In this particular study, engineers helped to build a domain understanding to interpret the results as well as steer the search of specific if-then rules, which helped to find more significant patterns in the data (Cristina et al. 2009).

The addition of domain experts helped captured tacit knowledge and transformed it into explicit knowledge, which was then used to find significant patterns in the data that was collected and mined through.  This eventually leads to a more manageable set of information with high significance to the company to which data-driven decisions can be made to support the corporate planning. Thus, knowledge management can be an integral part of Business Intelligence.  Finally, Business Intelligence uses data to create information that when introduced with experience of the employees (through knowledge management) it can then create explicit knowledge, which can provide more meaningful data-driven decisions than if one were to focus on a Business Intelligence Systems alone.

The effectiveness of capturing and adding domain knowledge into a company’s Business Intelligence System depends on the quality of employees in the company and their willingness to share that knowledge.  At the end of the day, a corporate plan that focuses on staff responsibilities and procedures revolving both in Business Intelligence and Knowledge Management will gain more insights and a higher return on investment that will eventually feed back into the corporate and business plans.

References

  • Carter, K. B., Farmer, D., & Siegel C., (2014). Actionable Intelligence: A Guide to Delivering Business Results with Big Data Fast!. John Wiley & Sons P&T. VitalBook file.
  • Cristina, A., Garcia, B., Ferraz, I., & Vivacqua, A. S. (2009). From data to knowledge mining. http://doi.org/10.1017/S089006040900016X
  • McNurlin, B., Sprague, R., Bui, T. (2008). Information Systems Management, 8th Edition. Pearson Learning Solutions. VitalBook file.
  • Minelli, M., Chambers, M., and Dhiraj A. (2013). Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today’s Businesses. John Wiley & Sons P&T. VitalBook file.
  • Smith, C. (n.d.) The difference between business planning and corporate planning. Small Business Chron. Retrieved from http://smallbusiness.chron.com/differences-between-business-planning-corporate-planning-882.html

Big Data Analytics: Career Prospects

There is a wealth of employment opportunities for professionals with knowledge of big data analytics. This post explores what employment opportunities currently exist for people graduating with a concentration in data analytics.

Masters and Doctoral graduates have some advantages over Undergraduates, because they have done research or capstones involving big datasets, they can explain the motivations and reasoning behind the work (chapter 1 & 2 of the dissertation), they can learn and adapt quickly (chapter 3 reflects what you have learned and how you will apply it), and they can think critically about problems (chapter 4 & 5 of the dissertation).  Doctoral student, work on a problem for multiple months/years to see a solution (filling in a gap in the knowledge) that they couldn’t dream of seeing as incomplete (or unfillable).  But, to prepare best for a data science position or big data position, the doctoral shouldn’t be purely theoretical, and should contain an analysis of huge datasets.  Based on my personal analysis, I have noticed that when applying for a senior level position or a team lead position in data science, a doctorate gives you an additional three years of experience on top of what you have already.  Whereas if you lack a doctorate, you need a Master’s degree and three years of experience to be considered for that senior level position or a team lead position in data science.

Master levels courses in big data help build a strong mathematical, statistical, computational, and programming skills. Doctorate level courses help you learn and push the limits of knowledge in all these above mentioned fields, but also aid in becoming a domain expert in a particular area in data science.  Commanding that domain expertise, which is what you get through going through a doctoral program, can make you more valuable in the job market (Lo, n.d.).  Being more valuable in the job market can allow you to demand more in compensation.  Multiple sources of can quote multiple ranges for salaries, mostly because, this field has yet to be standardized (Lo, n.d.).  Thus, I would only provide two sources for salary ranges.

According to Columbus (2014), jobs that involve big data could include Big Data Solution Architect, Linux Systems and Big Data Engineer, Big Data Platform Engineer, Lead Software Engineer, Big Data (Java, Hadoop, SQL) have the following salary statistics:

  • Q1: $84,650
  • Median: $103,000
  • Q3: $121,300

Columbus (2014) also stated that it is very difficult to find the right people for an open requisite and that most requisites remain open for 47 days.  According to Columbus (2014), the most wanted skills for analytics data jobs based on of requisition postings in the field are: in Python (96.90% growth in demand in the past year), Linux and Hadoop (with 76% growth in demand, each).

Lo (n.d.) states that individuals with just a BS or MS degree and no full-time work experience should expect $50-75K whereas data scientist with experience can command up from $65-110K.

  • Data scientist can earn $85-170K
  • Data science/analytics managers can earn $90-140K for 1-3 direct reports
  • Data science/analytics managers can earn $130-175K for 4-9 direct reports
  • Data science/analytics managers can earn $160-240K for 10+ direct reports
  • Database Administrators can earn $50-120K, which varies upwards per more experience
  • Junior Big data engineers can earn $79-115K
  • Domain Expert Big data engineers can earn $100-165K

One way to look for opportunities in the field that are currently available is looking into the Gartner’s Magic Quadrant for Business Intelligence and Analytics Platforms (Parenteau et al., 2016). If you want to help push a tool into a higher ease of execution and completeness of vision as a data scientist consider employment in: Pyramid Analytics, Yellowfin, Platfora, Datawatch, Information Builders, Sisense, Board International, Salesforce, GoodData, Domo, Birst, SAS, Alteryx, SAP, MicroStrategy, Logi Analytics, IBM, ClearStory Data, Pentaho, TIBCO Software, BeyondCore, Qlik, Microsoft, and Tableau.  That is one way to look at this data.  Another way to look at this data is to see which tools are the best in the field and (Tableau, Qlik, Microsoft, with SAS Birst, Alterxyx, and SAP following behind) and learn those tools to to become more marketable.

Resources