Adv Topics: Extracting Knowledge from big data

The evolution of data to wisdom is defined by the DIKW pyramid, where Data is just facts without any context, but when facts are used to understand relationships it generates Information (Almeyer-Stubbe & Coleman, 2014). That information can be used to understand patterns, it can then help build Knowledge, and when that knowledge is used to understand principles, it builds Wisdom (Almeyer-Stubbe & Coleman, 2014; Bellinger, Castro, Mills, n.d.). Building an understanding to jump from one level of the DIKW pyramid, is an appreciation of learning “why” (Bellinger et al., n.d.). Big data was first coined in a Gartner blog post, is data that has high volume, variety, and velocity, but without any interest in understanding that data, data scientist will lack context (Almeyer-Stubbe & Coleman, 2014; Bellinger et al., n.d.; Laney, 2001). Therefore, applying the DIKW pyramid can help turn that big data into extensive knowledge (Almeyer-Stubbe & Coleman, 2014; Bellinger et al., n.d.; Sakr, 2014). Extensive knowledge is a derived from placing meaning to big data usually in the form of predictive analytics algorithms (Sakr, 2014).

Machine learning requires historical data and is part of the data analytics process under data mining to understand hidden patterns or structures within the data (Almeyer-Stubbe & Coleman, 2014). Machine learning is easier to build and maintain than other classical data mining techniques (Wollan, Smith, & Zhou, 2010). Machine learning algorithms include clustering, classification, and association rules techniques and the right algorithm from any of these three techniques must be selected that meet the needs of the data (Services, 2015). Unsupervised machine learning techniques like clustering are used when data scientist do not understand or classify data prior to data mining techniques to understand hidden structures within the data set (Brownlee, 2016; Services, 2015). Supervised machine learning involves model training and model testing to aid in understanding which input variables feed into an output variable, involving such techniques as classification and regression (Brownlee, 2016).

An example of an open source Hadoop machine learning algorithm library would include Apache Mahout, which can be found at http://mahout.apache.org (Lublinsky, Smith, & Yakubovich, 2013). A limitation from learning from historical data to predict the future is it can “stifle innovation and imagination” (Almeyer-Stubbe & Coleman, 2014). Another limitation can exist that current algorithms may not run on distributed database systems. Thus some tailoring of the algorithms may be needed (Services, 2015). The future of machine learning involves its algorithms becoming more interactive to the end user, known as active learning (Wollan, Smith, & Zhou, 2010).

Case Study: Machine learning, medical diagnosis, and biomedical engineering research – commentary (Foster, Koprowski, & Skufca, 2014)

The authors created a synthetic training data set to simulate a typical medical classification problem of healthy and ill people and assigned random numbers to 10 health variables. Given this information, the actual classification accuracy should be 50%, which is also similar to pure chance alone. These authors found that when classification machine learning algorithms are misapplied, it can lead to false results. This was proven when their model took only 50 people to produce similar accuracy values of pure chance alone. Thus, the authors of this paper were trying to warn the medical field that misapplying classification techniques can lead to overfitting.

The authors then looked at feature selection for classifying Hashimoto’s disease from 250 clinical ultrasound data with the disease and 250 healthy people. Ten variables were selected to help classify these images, and a MATLAB machine learning algorithm was trained on 400 people (200 healthy and 200 ill) to then be tested on 100 people (50 healthy and 50 ill). They were able to show that when 3-4 variables were used they produced better classification results, thus 3-4 variables had huge information gain. This can mislead practitioners, because of the small data set that could be generalized too broadly and the lack of independence between training and testing datasets. The authors argued that larger data sets are needed to get rid of some of the issues that could result in the misapplication of classifiers.

The authors have the following four recommendations when considering the use of supervised machine learning classification algorithms:

    1. Clearly, state the purpose of the study and come from a place of understanding of that problem and its applications.
    2. Minimize the number of a variable when used in classifiers, such as using pruning algorithms in classification algorithms to only select certain variables that meet a certain level of information gain. This is more important with smaller data sets than with big data.
    3. Understand that classifiers are sensitive and that results gained from one set of instances might require further adjustments to be implemented elsewhere.
    4. Classification algorithms and data mining are part of the experimental process not the answer to all problems.

Resources:

Advertisements

Adv Topics: MapReduce and Hadoop

Hadoop allows for data processing through MapReduce and it also allows for data storage (Lublinsky et al., 2014). MapReduce is an analytical engine and pattern that takes advantage of distributed systems while keeping the processes and data in one machine (Sadalage & Fowler, 2012). MapReduce thus contains two functions that work in parallel on distributed systems (Hortonworks, 2013; Sadalage & Fowler, 2012; Sakr, 2014; Sathupadi, 2010):

    1. Mappers functions create and process transactions on the system by mapping and aggregating data by key values. Mappers can read only one data record at a time.
    2. Reducers functions know what that key values are and will take all those values stored in a map to reduce the data to what is relevant. Reducers help summarize the data into a single output. This helps deal with the amount of data moving between multiple computational nodes.

Lublinsky, Smith, and Yakubovich, (2014), stated that an intermediate component of MapReduce is known as the shuffle and sort, where the data from the mapping function outputs are moved and presented to the reducer function.

Thus, MapReduce is a framework that uses parallel sequential algorithms that capitalize on cloud architecture, which became popular under the open source Hadoop project, as its main executable analytic engine (Lublinsky et al., 2014; Sadalage & Fowler, 2012; Sakr, 2014). Essentially, a sequential algorithm is a computer program that runs on a sequence of commands, and a parallel algorithm runs a set of sequential commands over separate computational cores (Brookshear & Brylow, 2014; Sakr, 2014). Thus, a parallel sequential algorithm runs a full sequential program over multiple but separate cores (Sakr, 2014). Another feature of MapReduce is that a reduced output can become another’s map function (Sadalage & Fowler, 2012). Subsequently, the advantages and disadvantages of using MapReduce are (Lusblinksy et al., 2014; Sakr, 2014):

+ aggregation techniques under the mapper function can exploit multiple different techniques

+ no read or write of intermediate data, thus preserving the input data

+ no need to serialize or de-serialize code in either memory or processing

+ it is scalable based on the size of data and resources needed for processing the data

+ isolation of the sequential program from data distribution, scheduling, and fault tolerance

– too many mapper functions can create an infrastructure overhead, which increases resources and thus cost

– too few mapper functions can create huge workloads for certain types of computational nodes

– too many reducers can provide too many outputs, and too little reducers can provide too little outputs

 – it’s a different programming paradigm that most programmers are not familiar with

 – the use of available parallelism will be underutilized for smaller data sets

Given that Hadoop is predominately known for popularizing MapReduce tasks, it is also known for its Hadoop Distributed File System (HDFS) where the data is distributed across multiple systems (Rathbone, 2013). Hadoop’s service is part of the cloud (as Platform as a Service = PaaS).  For PaaS, the end users manage the applications and data, whereas the provider (Hadoop), administers the runtime, middleware, O/S, virtualization, servers, storage, and networking (Lau, 2001). Data is broken up into small blocks, like Legos, such that they are distributed across a distributed database system and across multiple servers and can be processed across all these servers, e.g. Hadoop Cluster (IBM, n.d.).

A common example of a parallel sequential program is dynamical weather forecasting models. In dynamical weather forecasting models, there is a set of defined geodynamic, thermodynamic, and physical sequential algorithms define and evolve the main seven variables of weathers across time. For each time step, the forecasting models run these sequential algorithms over each grid point, which can represent a finite geospatial region. Each of these geospatial regions is split amongst multiple computational scores. This example expands in complexity when data has to travel between different finite geospatial regions through the boundaries, which is an example of data parallelism (Sakr, 2014). MapReduce uses the concept of data parallelism to help map and reduce data. Therefore, weather models could be considered as a loose form of MapReduce algorithm.

Resources:

Compelling topics

Hadoop, XML and Spark

Hadoop is predominately known for its Hadoop Distributed File System (HDFS) where the data is distributed across multiple systems and its code for running MapReduce tasks (Rathbone, 2013). MapReduce has two queries, one that maps the input data into a final format and split across a group of computer nodes, while the second query reduces the data in each node so that when combining all the nodes it can provide the answer sought (Eini, 2010).

XML documents represent a whole data file, which contains markups, elements, and nodes (Lublinsky, Smith, & Yakubovich,, 2013; Myer, 2005):

  • XML markups are tags that helps describe the data start and end points as well as the data properties/attributes, which are encapsulated by < and a >
  • XML elements are data values, encapsulated by an opening <tag> and a closing </tag>
  • XML nodes are part of the hierarchical structure of a document that contains a data element and its tags

Unfortunately, the syntax and tags are redundant, which can consume huge amounts of bytes, and slow down processing speeds (Hiroshi, 2007)

Five questions must be asked before designing an XML data document (Font, 2010):

  1. Will this document be part of a solution?
  2. Will this document have design standards that must be followed?
  3. What part may change over time?
  4. To what extent is human readability or machine readability important?
  5. Will there be a massive amount of data? Does file size matter?

All XML data documents should be versioned, and key stakeholders should be involved in the XML data design process (Font, 2010).  XML is a machine and human readable data format (Smith, 2012). With a goal of using XML for MapReduce, we need to assume that we need to map and reduce huge files (Eini, 2010; Smith 2012). Unfortunately, XML doesn’t include sync markers in the data format and therefore MapReduce doesn’t support XML (Smith, 2012). However, Smith (2012) and Rohit (2013) used the XmlInputFormat class from mahout to work with XML input data into HBase. Smith (2012), stated that the Mahout’s code needs to know the exact sequence of XML start and end tags that will be searched for and Elements with attributes are hard for Mahout’s XML library to detect and parse.

Apache Spark started from a working group inside and outside of UC Berkley, in search of an open-sourced, multi-pass algorithm batch processing model of MapReduce (Zaharia et al., 2012). Spark is faster than Hadoop in iterative operations by 25x-40x for really small datasets, 3x-5x for relatively large datasets, but Spark is more memory intensive, and speed advantage disappears when available memory goes down to zero with really large datasets (Gu & Li, 2013).  Apache Spark, on their website, boasts that they can run programs 100X faster than Hadoop’s MapReduce in Memory (Spark, n.d.). Spark outperforms Hadoop by 10x on iterative machine learning jobs (Gu & Li, 2013). Also, Spark runs 10x faster than Hadoop on disk memory (Spark, n.d.). Gu and Li (2013), recommend that if speed to the solution is not an issue, but memory is, then Spark shouldn’t be prioritized over Hadoop; however, if speed to the solution is critical and the job is iterative Spark should be prioritized.

Data visualization

Big data can be defined as any set of data that has high velocity, volume, and variety, also known as the 3Vs (Davenport & Dyche, 2013; Fox & Do, 2013; Podesta, Pritzker, Moniz, Holdren, & Zients, 2014).  What is considered to be big data can change with respect to time.  What is considered as big data in 2002 is not considered big data in 2016 due to advancements made in technology over time (Fox & Do, 2013).  Then there is Data-in-motion, which can be defined as a part of data velocity, which deals with the speed of data coming in from multiple sources as well as the speed of data traveling between systems (Katal, Wazid, & Goudar, 2013). Essentially data-in-motion can encompass data streaming, data transfer, or real-time data. However, there are challenges and issues that have to be addressed to conducting real-time analysis on data streams (Katal et al., 2013; Tsinoremas et al., n.d.).

It is not enough to analyze the relevant data for data-driven decisions but also selecting relevant visualizations of that data to enable those data-driven decision (eInfochips, n.d.). There are many types of ways to visualize the data to highlight key facts through style and succinctly: tables and rankings, bar charts, line graphs, pie charts, stacked bar charts, tree maps, choropleth maps, cartograms, pinpoint maps, or proportional symbol maps (CHCF, 2014).  The above visualization plots, charts, maps and graphs could be part of an animated, static, and Interactive Visualizations and would it be a standalone image, dashboards, scorecards, or infographics (CHCF, 2014; eInfochips, n.d.).

Artificial Intelligence (AI)

Artificial Intelligence (AI) is an embedded technology, based off of the current infrastructure (i.e. supercomputers), big data, and machine learning algorithms (Cyranoski, 2015; Power, 2015). AI can provide tremendous value since it builds thousands of models and correlations automatically in one week, which use to take a few quantitative data scientist years to do (Dewey, 2013; Power, 2015).  Unfortunately, the rules created by AI out of 50K variables lack substantive human meaning, or the “Why” behind it, thus making it hard to interpret the results (Power, 2015).

“Machines can excel at frequent high-volume tasks. Humans can tackle novel situations.” said by Anthony Goldbloom. Thus, the fundamental question that decision makers need to ask, is how the decision is reduced to frequent high volume task and how much of it is reduced to novel situations (Goldbloom, 2016).  Therefore, if the ratio is skewed on the high volume tasks then AI could be a candidate to replace decision makers, if the ratio is evenly split then AI could augment and assist decision makers, and if the ratio is skewed on novel situations, then AI wouldn’t help decision makers.  They novel situations is equivalent to our tough challenges today (McAfee, 2013).  Finally, Meetoo (2016), warned that it doesn’t matter how intelligent or strategic a job could be, if there is enough data on that job to create accurate rules it can be automated as well; because machine learning can run millions of simulations against itself to generate huge volumes of data to learn from.

 

Resources:

Data Tools: XML & Hadoop

Hadoop is a cluster-based file system and has a special processing framework called MapReduce. Does XML have any impact on MapReduce application design?

Hadoop is predominately known for its Hadoop Distributed File System (HDFS) where the data is distributed across multiple systems and its code for running MapReduce tasks (Rathbone, 2013). MapReduce has two queries, one that maps the input data into a final format and split across a group of computer nodes, while the second query reduces the data in each node so that when combining all the nodes it can provide the answer sought (Eini, 2010). In other words, data is partitioned, sorted and grouped to provide a key and value as an output (Rathbone, 2013). As more data gets added in real time, data in motion, MapReduce can do the recalculations cheaper than before, and the data scientist doesn’t have to touch the data (Eini, 2010; Roy, 2014). Roy (2014) had suggested an example of using Intensive Care Unit (ICU) sensor data, which comes into a database multiple times per second to help avoid false positive alarms that could lead to overwork hospital staffers.  However, Hadoop is best used for non-realtime tasks with a huge demand for processing power (Rathbone, 2013). The issue for Hadoop is to identify the correct instance that an actionable item is needed and acting on that item (Roy, 2014).

Does XML have any impact on MapReduce application design?

XML is a machine and human readable data format (Smith, 2012). With a goal of using XML for MapReduce, we need to assume that we need to map and reduce huge files (Eini, 2010; Smith 2012). Unfortunately, XML doesn’t include sync markers in the data format and therefore MapReduce doesn’t support XML (Smith, 2012). There are posts out there by coders use workarounds to allow for XML processing in Hadoop (Atom, 2010; Krishna, 2014; Rohit, 2013; Smith, 2012).  Smith (2012) and Rohit (2013) used the XmlInputFormat class from mahout to work with XML input data into HBase.  So, depending on the path the data scientist chooses will mean how much work is needed to be able to use MapReduce: code a new version of reading, mapping and reducing XML data from scratch; or use libraries from other code that is compatible with Hadoop.  Smith (2012), stated that the Mahout’s code needs to know the exact sequence of XML start and end tags that will be searched for and Elements with attributes are hard for Mahout’s XML library to detect and parse. Depending on the complexity of the XML document, Smith’s (2012) statement may mean the more complex use of XML input codes may be needed.  Therefore, a well designed XML document could make this process a bit easier, but the complexity of the data stored in it will make the task of creating code for using MapReduce on XML data harder.  Finally, Smith (2012) recommended a preprocessing step to convert XML data and treat it as a line of a record into other libraries native for MapReduce.

References

Data Tools: Hadoop Vs Spark

The Hadoop ecosystem is rapidly evolving. Apache Spark is a recent addition to the Hadoop ecosystem. Both help with traditional challenges of storing and processing of large data sets.

 

Apache Spark

Apache Spark started from a working group inside and outside of UC Berkley, in search of an open-sourced, multi-pass algorithm batch processing model of MapReduce (Zaharia et al., 2012). Spark can have applications written in Java, Scala, Python, R, and interfaces with SQL, which increases ease of use (Spark, n.d.; Zaharia et al., 2012).

Essentially, Spark is a high-performance computing cluster framework, but it doesn’t have its distributed file system and thus uses Hadoop Distributed File System (HDFS, HBase) as in input and output (Gu & Li, 2013).  Not only can it access data from HDFS, HBase, it can also access data from Cassandra, Hive, Tachyon, and any other Hadoop data source (Spark, n.d.).  However, Spark uses its data structure called Resilient Distribution Datasets (RDD) which cache’s data and is a read-only operation to improve its processing time as long as there is enough memory for it in all the nodes of a cluster (Gu & Li, 2013; Zaharia et al., 2012). Spark tries to avoid data reloading from the disk that is why it stores its data in the node’s cache system, for initial and intermediate results (Gu & Li, 2013).

Machines in the cluster can be rebuilt if lost, thus making the RDDs are fault-tolerant without requiring replication (Gu &LI, 2013; Zaharia et al., 2012).  Each RDD is tracked in a lineage graph, and reruns the operations if data becomes lost, therefore reconstructing data, even if all the nodes running spark were to fail (Zaharia et al., 2012).

Hadoop

Hadoop is Java-based system that allows for manipulation and calculations to be done by calling on MapReduce function on its HDFS system (Hortonworks, 2013; IBM, n.d.).

HFDS big data is broken up into smaller blocks across different locations, no matter the type or amount of data, each of these blocs can be still located, which can be aggregated like a set of Legos throughout a distributed database system (IBM, n.d.; Minelli, Chambers, & Dhiraj, 2013). Data blocks are distributed across multiple servers.  This block system provides an easy way to scale up or down the data needs of the company and allows for MapReduce to do it tasks on the smaller sets of the data for faster processing (IBM, n.d). IBM (n.d.) boasts that the data blocks in the HFDS are small enough that they can be easily duplicated (for disaster recovery purposes) in two different servers (or more, depending on your data needs), offering fault tolerance as well. Therefore, IBM’s (n.d.) MapReduce functions use the HFDS to run its procedures on the server in which the data is stored, where data is stored in a memory, not in cache and allow for continuous service.

MapReduce contains two job types that work in parallel on distributed systems: (1) Mappers which creates & processes transactions on the system by mapping/aggregating data by key values, and (2) Reducers which know what that key value is, will take all those values stored in a map and reduce the data to what is relevant (Hortonworks, 2013; Sathupadi, 2010). Reducers can work on different keys, and when huge amounts of data are entered into MapReduce, then the Mapper maps the data, where the data is then shuffled and sorted before it is reduced (Hortonworks, 2013).  Once the data is reduced, the researcher gets the output that they sought.

Significant Differences between Hadoop and Apache Spark              

Spark is faster than Hadoop in iterative operations by 25x-40x for really small datasets, 3x-5x for relatively large datasets, but Spark is more memory intensive, and speed advantage disappears when available memory goes down to zero with really large datasets (Gu & Li, 2013).  Apache Spark, on their website, boasts that they can run programs 100X faster than Hadoop’s MapReduce in Memory (Spark, n.d.). Spark outperforms Hadoop by 10x on iterative machine learning jobs (Gu & Li, 2013). Also, Spark runs 10x faster than Hadoop on disk memory (Spark, n.d.).

Gu and Li (2013), recommend that if speed to the solution is not an issue, but memory is, then Spark shouldn’t be prioritized over Hadoop; however, if speed to the solution is critical and the job is iterative Spark should be prioritized.

References

  • Gu, L., & Li, H. (2013). Memory or time: Performance evaluation for iterative operation on hadoop and spark. InHigh Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International Conference on (pp. 721-727). IEEE.

Data Tools: Case Study on Hadoop’s effectiveness

Hadoop and Spark allow storing of very large files, and it stores unique approach on how files are stored and accessed. This post identified a real life case study where Hadoop was used in meteorology.

Case Study: Open source Cloud Computing Tools: A case study with a weather application

Focus on: Hadoop V0.20, which has a Platform as a Service cloud solution, which have parallel processing capabilities

Cluster size: 6 nodes, with Hadoop, Eucalyptus, and Django-Python clouds interfaces installed

Variables: Managing historical average temperature, rainfall, humidity data, and weather conditions per latitude and longitude across time and mapping it on top of a Google’s Map user interface

Data Source: Yahoo! Weather Page

Results/Benefits to the Industry:  The Hadoop platform has been evaluated by ten different criteria and compared to Eucalyptus and Django-Python, from a scale of 0-3, where 0 “indicates [a] lack of adequate feature support” and 3 “indicates that the particular tool provides [an] adequate feature to fulfill the criterion.”

Table 1: The criterion matrix and numerical scores have been adopted from Greer, Rodriguez-Martinez, and Seguel (2010) results.

Criterion Description Score
Management Tools Tools to deploy, configure, and maintain the system 0
Development Tools Tools to build new applications or features 3
Node Extensibility Ability to add new nodes without re-initialization 3
Use of Standards Use of TCP/IP, SSH, etc. 3
Security Built-in security as oppose to use of 3rd party patches. 3
Reliability Resilience to failures 3
Learning Curve Time to learn technology 2
Scalability Capacity to grow without degrading performance
Cost of Ownership Investments needed for usage 2
Support Availability of 3rd party support 3
Total 22

Eucalyptus scored 18, and Django-Python scored 20, therefore making Hadoop a better solution for this case study.  They study mentioned that:

  • Management tools: configuration was done by hand with XML and text and not graphical user interface
  • Development tools: Eclipse plug-in aids in debugging Hadoop applications
  • Node Extensibility: Hadoop can accept new nodes with no interruption in service
  • Use of standards: uses TCP/IP, SSH, SQL, JDK 1.6 (Java Standard), Python V2.6, and Apache tools
  • Security: password protected user-accounts and encryption
  • Reliability: Fault-tolerance is presented, and the user is shielded from the effects
  • Learning curve: It is not intuitive and required some experimentation after practicing from online tutorials
  • Scalability: not assessed due to the limits of the study (6-nodes is not enough)
  • Cost of Ownership: To be effective Hadoop needs a cluster, even if they are cheap machines
  • Support: there is a third party support for Hadoop

The authors talk about how Hadoop fails in providing a real-time response, and that part of the batch code should include email requests to be sent out at the start, key points of the iteration, or even at the end of the job when the output is ready.  The speed of Hadoop is slower to the other two solutions that were evaluated, but the fault tolerance features make up for it.  For set-up and configuration, Hadoop is simple to use.

Use in the most ample manner?

Hadoop was not fully used in my opinion and the opinion of the authors because they stated that they could not scale their research because the study was limited to a 6-node cluster. Hadoop is built for big data sets from various sources, formats, etc. to be ingested and processed to help deliver data-driven insights and the features of scalability that address this point were not addressed adequately in this study.

Resources

  • Greer, M., Rodriguez-Martinez, M., & Seguel, J. (2010). Open Source Cloud Computing Tools: A Case Study with a Weather Application.Florida: IEEE Open Source Cloud Computing.

Data Tools: Hadoop and how to install it

Installation Guide to Hadoop for Windows 10.

What is Hadoop

Hadoop’s Distributed File System (HFDS) is where big data is broken up into smaller blocks (IBM, n.d.), which can be aggregated like a set of Legos throughout a distributed database system. Data blocks are distributed across multiple servers.  This block system provides an easy way to scale up or down the data needs of the company and allows for MapReduce to do it tasks on the smaller sets of the data for faster processing (IBM, n.d). Blocks are small enough that they can be easily duplicated (for disaster recovery purposes) in two different servers (or more, depending on the data needs).

HFDS can support many different data types, even those that are unknown or yet to be classified and it can store a bunch of data.  Thus, Hadoop’s technology to manage big data allows for parallel processing, which can allow for parallel searching, metadata management, parallel analysis (with MapReduce), the establishment of workflow system analysis, etc. (Gary et al., 2005, Hortonworks, 2013, & IBM, n.d.).

Given the massive amounts of data in Big Data that needs to get processed, manipulated, and calculated upon, parallel processing and programming are there to use the benefits of distributed systems to get the job done (Minelli et al., 2013).  Hadoop, which is Java based allows for manipulation and calculations to be done by calling on MapReduce, which pulls on the data which is distributed on its servers, to map key items/objects, and reduces the data to the query at hand (Hortonworks, 2013 & Sathupadi, 2010).

Parallel processing allows making quick work on a big data set, because rather than having one processor doing all the work, Hadoop splits up the task amongst many processors. This is the largest benefit of Hadoop, which allows for parallel processing.  Another advantage of parallel processing is when one processor/node goes out; another node can pick up from where that task last saved safe object task (which can slow down the calculation but by just a bit).  Hadoop knows that this happens all the time with their nodes, so the processor/node create backups of their data as part of their fail safe (IBM, n.d).  This is done so that another processor/node can continue its work on the copied data, which enhances data availability, which in the end gets the task you need to be done now.

Minelli et al. (2013) stated that traditional relational database systems could depend on hardware architecture.  However, Hadoop’s service is part of cloud (as Platform as a Service = PaaS).  For PaaS, we manage the applications, and data, whereas the provider (Hadoop), administers the runtime, middleware, O/S, virtualization, servers, storage, and networking (Lau, 2001).  The next section discusses how to install Hadoop and how to set up Eclipse to access map/reduce servers.

Installation steps

  • Go to the Hadoop Main Page < http://hadoop.apache.org/ > and scroll down to the getting started section, and click “Download Hadoop from the release page.” (Birajdar, 2015)
  • In the Apache Hadoop Releases < http://hadoop.apache.org/releases.html > Select the link for the “source” code for Hadoop 2.7.3, and then select the first mirror: “http://apache.mirrors.ionfish.org/hadoop/common/hadoop-2.7.3/hadoop-2.7.3-src.tar.gz” (Birajdar, 2015)
  • Open the Hadoop-2.7.3 tarball file with a compression file reader like WinRAR archiver < http://www.rarlab.com/download.htm >. Then drag the file into the Local Disk (C:). (Birajdar, 2015)
  • Once the file has been completely transferred to the Local Disk drive, close the tarball file, and open up the hadoop-2.7.3-src folder. (Birajdar, 2015)
  • Download Hadoop 0.18.0 tarball file < https://archive.apache.org/dist/hadoop/core/hadoop-0.18.0/ > and place the copy the “Hadoop-vm-appliance-0-18-0” folder into the Java “jdk1.8.0_101” folder. (Birajdar, 2015; Gnsaheb, 2013)
  • Download Hadoop VM file < http://ydn.zenfs.com/site/hadoop/hadoop-vm-appliance-0-18-0_v1.zip >, unzip it and place it inside the Hadoop src file. (Birajdar, 2015)
  • Open up VMware Workstation 12, and open a virtual machine “Hadoop-appliance-0.18.0.vmx” and select play virtual machine. (Birajdar, 2015)
  • Login: Hadoop-user and password: Hadoop. (Birajdar, 2015; Gnsaheb, 2013)
  • Once in the virtual machine, type “./start-hadoop” and hit enter. (Birajdar, 2015; Gnsaheb, 2013)
    1. To test MapReduce on the VM: bin/Hadoop jar Hadoop-0.18.0-examples.jar pi 10 100000000
      1. You should get a “job finished in X seconds.”
      2. You should get an “estimated value of PI is Y.”
  • To bind MapReduce plugin to eclipse (Gnsaheb, 2013)
    1. Go into the JDK folder, under Hadoop-0.18.0 > contrib> eclipse-plugin > “Hadoop-0.18.0-eclipse-plugin” and place it into the eclipse neon 1 plugin folder “eclipse\plugins”
    2. Open eclipse, then open perspective button> other> map/reduce.
    3. In Eclipse, click on Windows> Show View > other > MapReduce Tools > Map/Reduce location
    4. Adding a server. On the Map/Reduce Location window, click on the elephant
      1. Location name: your choice
      2. Map/Reduce master host: IP address achieved after you log in via the VM
  • Map/Reduce Master Port: 9001
  1. DFS Master Port: 9000
  2. Username: Hadoop-user
  1. Go to the advance parameter tab > mapred.system.dir > edit to /Hadoop/mapped/system

Issues experienced in the installation processes (Discussion of any challenges and explain how it was investigated and solved)

Not one source has the entire solution Birajdar, 2015; Gnsaheb, 2013; Korolev, 2008).  It took a combination of all three sources, to get the same output that each of them has described.  Once the solution was determined to be correct, and the correct versions of the files were located, they were expressed in the instruction set above.  Whenever a person runs into a problem with computer science, google.com is their friend.  The links above will become outdated with time, and methods will change.  Each person’s computer system is different than those from my personal computer system, which is reflected in this instruction manual.  This instruction manual should help others google the right terms and in the right order to get Hadoop installed correctly onto their system.  This process takes about 3-5 hours to install correctly, with the long time it takes to download and install the right files, and with the time to set up everything correctly.

Resources