Business Intelligence: Predictions

According to the Association of Professional Futurists (n.d.), “A professional futurist is a person who studies the future in order to help people understand, anticipate, prepare for and gain advantage from coming changes. It is not the goal of a futurist to predict what will happen in the future. The futurist uses foresight to describe what could happen in the future and, in some cases, what should happen in the future.” In my opinion, I will discuss what the future might hold for Data Mining, Knowledge Management and comprehensive BI program and strategy.

Advertisements

The future of …

  • Data mining:

o    Web structure mining (studying the web structure of web pages) and web usage analysis (studying the usage of web pages) will become more prominent in the future.  Victor and Rex (2016) stated that web mining differs from traditional data mining by scale (web information is much larger in number, making 10M web pages seem like it’s too small), access (web information is mostly public, whereas traditional data could be private), and structure (web pages have unstructured, and semi-structured data, whereas traditional data mining, has some explicit level of structure).  The structure of a website can contain: Page Rank, Page number, Damping factor, Number of pages, out-links, in-links, etc.  Your page is considered an authoritative piece if there are many in-links, or it can be considered a hub if it has many out-links, and this helps define page rank and structure of the website (Victor & Rex, 2016).  But, page rank is too trivial of calculation.  One day we will be able to not only know a page rank of a website, but learn its domain authority, page authority, and domain validity, which will help define how much value a particular site can bring to the person.  If Google were to adopt these measures, we could see

  • Data mining’s link to knowledge management (KM):

o    A move towards the away from KM tools and tool set to seeing knowledge as being embedded into as many processes and people as possible (Ferguson, 2016). KM relies on sharing, and as we move away from tools, processes will be setup to allow this sharing to happen.  Sharing occurs more frequently with an increase in interactive and social environments (Ferguson, 2016).  Thus, internal corporate social media platforms may become the central data warehouse, hosting all kinds of knowledge.  The issue and further research need to go into this, is how do we more people engaged on a new social media platform to eventually enable knowledge sharing. Currently, forums, YouTube, and blogs are inviting, highly inclusive environments that share knowledge, like how to solve a particular issue (evident by YouTube video tutorials).  In my opinion, these social platforms or methods of sharing, show the need for a more social, inclusive, and interactive environment needs to be for knowledge sharing to happen more organically.

o    IBM (2013), shows us a glimpse of how knowledge management from veteran police officers, crime data stored in a crime data warehouse, the power of IBM data mining, can be to identifying criminals.  Mostly criminals commit similar crimes with similar patterns and motives.  The IBM tools augment officer’s knowledge, by narrowing down a list of possible suspects of crime down to about 20 people and ranking them on how likely the suspects committed this new crime.  This has been used in Miami-Dade County, the 7th largest county in the US, and a tool like this will become more widespread with time.

  • Business Intelligence (BI) program and strategy:

o    Potential applications of BI and strategy will go into the health care industry.  Thanks to ObamaCare (not being political here), there will be more data coming in due to an increase in patients having coverage, thus more chances to integrate: hospital data, insurance data, doctor diagnosis, patient care, patient flow, research data, financial data, etc. into a data warehouse to run analytics on the data to create beneficial data-driven decisions (Yeoh, & Popovič, 2016; Topaloglou & Barone, 2015).

o    Potential applications of BI and strategy will affect supply chain management.  The Boeing Dreamliner 787, has outsourced 30% of its parts and components, and that is different to the current Boeing 747 which is only 5% outsourced (Yeoh, & Popovič, 2016).  As more and more companies increase their outsourcing percentages for their product mix, the more crucial is capturing data on fault tolerances on each of those outsourced parts to make sure they are up to regulation standards and provide sufficient reliability, utility, and warranty to the end customer.  This is where tons of money and R&D will be spent on in the next few years.

References

  • Ferguson, J. E. (2016). Inclusive perspectives or in-depth learning? A longitudinal case study of past debates and future directions in knowledge management for development. Journal of Knowledge Management, 20(1).
  • IBM (2013). Miami-Dade Police Department: New patterns offer breakthroughs for cold cases. Smarter Planet Leadership Series.  Retrieved from http://www.ibm.com/smarterplanet/global/files/us__en_us__leadership__miami_dade.pdf
  • Topaloglou, T., & Barone, D. (2015) Lessons from a Hospital Business Intelligence Implementation. Retrieved from http://www.idi.ntnu.no/~krogstie/test/ceur/paper2.pdf
  • Victor, S. P., & Rex, M. M. X. (2016). Analytical Implementation of Web Structure Mining Using Data Analysis in Educational Domain. International Journal of Applied Engineering Research, 11(4), 2552-2556.
  • Yeoh, W., & Popovič, A. (2016). Extending the understanding of critical success factors for implementing business intelligence systems. Journal of the Association for Information Science and Technology, 67(1), 134-147.

Big Data Analytics: POTUS Report

This has become a data-centric society, relying on real-time data and technology (i.e., cell phone, shopping online, social networking) more than ever. Although there are many advantages associated with the use of this data, there are concerns that the collection of massive amounts of data can lead to an invasion of privacy. In January, 2014, President Obama asked his staff to take the next 90 days to prepare a report for him on how big data is affecting people’s privacy. This post revolves around this report.

The aims of big data analytics are for data scientist to fuse data from various data sources, various data types, and in huge amounts so that the data scientist could find relationships, identify patterns, and find anomalies.  Big data analytics can help provide either a descriptive, prescriptive, or predictive result to a specific research question.  Big data analytics isn’t perfect, and sometimes the results are not significant, and we must realize that correlation is not causation.  Regardless, there are a ton of benefits from big data analytics, and this is a field where policy has yet to catch up to the field to protect the nation from potential downsides while still promoting and maximizing benefits.

Policies for maximizing benefits while minimizing risk in public and private sector

In the private sector, companies can create detailed personal profiles will enable personalized services from a company to a consumer.  Interpreting personal profile data would allow a company to retain and command more of the market share, but it can also leave room for discrimination in pricing, services quality/type, and opportunities through “filter bubbles” (Podesta, Pritzker, Moniz, Holdren, & Zients, 2014).  Policy recommendation should help to encourage de-identifying personally identifiable information to a point that it would not lead to re-identification of the data. Current policies for the private sector for promoting privacy are (Podesta, et al., 2014):

  • Fair Credit Reporting Act, helps to promote fairness and privacy of credit and insurance information
  • Health insurance Portability and Accountably Act enables people to understand and control how personal health data is used
  • Gramm-Leach-Bliley Act, helps consumers of financial services have privacy
  • Children’s Online Privacy Protection Act minimizes the collection/use of children data under the age of 13
  • Consumer Privacy bill of rights is a privacy blueprint that aids in allowing people to understand what their personal data is being collected and used for that are consistent with their expectation.

In the public sector, we run into issues, when the government has collected information about their citizens for one purpose, to eventually, use that same citizen data for a different purpose (Podesta, et al., 2014).  This has the potential of the government to exert power eventually over certain types of citizens and tamper civil rights progress in the future.  Current policies in the public sector are (Podesta, et al., 2014):

  • The Affordable Care Act allows for building a better health care system from a “fee-for-service” program to a “fee-for-better-outcomes.” This has allowed for the use of big data analytics to promote preventative care rather than emergency care while reducing the use of that data to eliminate health care coverage for “pre-existing health conditions.”
  • The Family Education Rights and Privacy Act, the Protection of Pupil Rights Amendment and the Children’s Online Privacy Act help seal children educational records to prevent misuse of that data.

Identifying opportunities for big data in the economy, health, education, safety, energy-efficiency

In the economy, the use of the internet of things to equip parts of product with sensors to help monitor and transmit live, thousands of data points for sending alerts.  These alerts can tell us when maintenance is needed, for which part and where it is located, making the entire process save time and improving overall safety(Podesta, et al., 2014).

In medicine, the use of predictive analytics could be used to identify instances of insurance fraud, waste, and abuse, in real time saving more than $115M per year (Podesta, et al., 2014).  Another instance of using big data is for studying neonatal intensive care, to help use current data to create prescriptive results to determine which newborns are likely to come into contact with which infection and what would that outcome be (Podesta, et al., 2014).  Monitoring newborn’s heart rate and temperature along with other health indicators can alert doctors of an onset of an infection, to prevent it from getting out of hand. Huge amounts of genetic data sets are helping locate genetic variant to certain types of genetic diseases that were once hidden in our genetic code (Podesta, et al., 2014).

With regards to national safety and foreign interests, data scientist and data visualizers have been using data gathered by the military, to help commanders solve real operational challenges in the battlefield (Podesta, et al., 2014).  Using big data analytics on satellite data, surveillance data, and traffic flow data through roads, are making it easier to detect, obtain, and properly dispose of improvised explosive devices (IEDs).  The Department of Homeland Security is aiming to use big data analytics to identify threats as they enter the country and people of higher than the normal probability to conduct acts of violence within the country (Podesta, et al., 2014). Another safety-related used of big data analytics is the identification of human trafficking networks through analyzing the “deep web” (Podesta, et al., 2014).

Finally for energy-efficiency, understanding weather patterns and climate change, can help us understand our contribution to climate change based on our use of energy and natural resources. Analyzing traffic data, we can help improve energy efficiency and public safety in our current lighting infrastructure by dimming lights at appropriate times (Podesta, et al., 2014).  Energy efficiencies can be maximized within companies using big data analytics to control their direct, and indirect energy uses (through maximizing supply chains and monitoring equipment).  Another way we are moving to a more energy efficient future is when the government is partnering with the electric utility companies to provide businesses and families access to their personal energy usage in an easy to digest manner to allow people and companies make changes in their current consumption levels (Podesta, et al., 2014).

Protecting your own privacy outside of policy recommendation

In this report it is suggested that we can control our own privacy through using the browse in private function in most current internet browsers, this would help prevent the collection of personal data (Podesta, et al., 2014). But, this private browsing varies from internet browser to internet browser.  For important information like being denied employment, credit or insurance, consumers should be empowered to know why they were denied and should ask for that information (Podesta, et al., 2014).  Find out the reason why can allow people to address those issues in order to persevere in the future.  We can encrypt our communications as well, in order to protect our privacy, with the highest bit protection available.  We need to educate ourselves on how we should protect our personal data, digital literacy, and know how big data could be used and abused (Podesta, et al., 2014).  While we wait for currently policies to catch up with the time, we actually have more power on our own data and privacy than we know.

 

Reference:

Podesta, J., Pritzker, P., Moniz, E. J., Holdren, J. & Zients,  J. (2014). Big Data: Seizing Opportunities, Preserving Values.  Executive Office of the President. Retrieved from https://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf