Adv Quant: Compelling Topics

A discussion on what were the most compelling topics learned in the subject of Advance Quantitative Analysis.

Advertisements

Compelling topics summary/definitions

  • Supervised machine learning algorithms: is a model that needs training and testing data set. However it does need to validate its model on some predetermined output value (Ahlemeyer-Stubbe & Coleman, 2014, Conolly & Begg, 2014).
  • Unsupervised machine learning algorithms: is a model that needs training and testing data set, but unlike supervised learning, it doesn’t need to validate its model on some predetermined output value (Ahlemeyer-Stubbe & Coleman, 2014, Conolly & Begg, 2014). Therefore, unsupervised learning tries to find the natural relationships in the input data (Ahlemeyer-Stubbe & Coleman, 2014).
  • General Least Squares Model (GLM): is the line of best fit, for linear regressions modeling along with its corresponding correlations (Smith, 2015). There are five assumptions to a linear regression model: additivity, linearity, independent errors, homoscedasticity, and normally distributed errors.
  • Overfitting: is stuffing a regression model with so many variables that have little contributional weight to help predict the dependent variable (Field, 2013; Vandekerckhove, Matzke, & Wagenmakers, 2014). Thus, to avoid the over-fitting problem, the use of parsimony is important in big data analytics.
  • Parsimony: is describing a dependent variable with the fewest independent variables as possible (Field, 2013; Huck, 2013; Smith, 2015). The concept of parsimony could be attributed to Occam’s Razor, which states “plurality out never be posited without necessity” (Duignan, 2015).  Vandekerckhove et al. (2014) describe parsimony as a way of removing the noise from the signal to create better predictive regression models.
  • Hierarchical Regression: When the researcher builds a multivariate regression model, they build it in stages, as they tend to add known independent variables first, and add newer independent variables in order to avoid overfitting in a technique called hierarchical regression (Austin, Goel & van Walraven, 2001; Field, 2013; Huck 2013).
  • Logistic Regression: multi-variable regression, where one or more independent variables are continuous or categorical which are used to predict a dichotomous/ binary/ categorical dependent variable (Ahlemeyer-Stubbe, & Coleman, 2014; Field, 2013; Gall, Gall, & Borg, 2006; Huck, 2011).
  • Nearest Neighbor Methods: K-nearest neighbor (i.e. K =5) is when a data point is clustered into a group, by having 5 of the nearest neighbors vote on that data point, and it is particularly useful if the data is a binary or categorical (Berson, Smith, & Thearling, 1999).
  • Classification Trees: aid in data abstraction and finding patterns in an intuitive way (Ahlemeyer-Stubbe & Coleman, 2014; Brookshear & Brylow, 2014; Conolly & Begg, 2014) and aid the decision-making process by mapping out all the paths, solutions, or options available to the decision maker to decide upon.
  • Bayesian Analysis: can be reduced to a conditional probability that aims to take into account prior knowledge, but updates itself when new data becomes available (Hubbard, 2010; Smith, 2015; Spiegelhalter & Rice, 2009; Yudkowsky, 2003).
  • Discriminate Analysis: how should data be best separated into several groups based on several independent variables that create the largest separation of the prediction (Ahlemeyer-Stubbe, & Coleman, 2014; Field, 2013).
  • Ensemble Models: can perform better than a single classifier, since they are created as a combination of classifiers that have a weight attached to them to properly classify new data points (Bauer & Kohavi, 1999; Dietterich, 2000), through techniques like Bagging and Boosting. Boosting procedures help reduce both bias and variance of the different methods, and bagging procedures reduce just the variance of the different methods (Bauer & Kohavi, 1999; Liaw & Wiener, 2002).

 

References

  • Ahlemeyer-Stubbe, Andrea, Shirley Coleman. (2014). A Practical Guide to Data Mining for Business and Industry, 1st Edition. [VitalSource Bookshelf Online].
  • Austin, P. C., Goel, V., & van Walraven, C. (2001). An introduction to multilevel regression models. Canadian Journal of Public Health92(2), 150.
  • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning,36(1-2), 105-139.
  • Berson, A. Smith, S. & Thearling K. (1999). Building Data Mining Applications for CRM. McGraw-Hill. Retrieved from http://www.thearling.com/text/dmtechniques/dmtechniques.htm
  • Brookshear, G., & Brylow, D. (2014). Computer Science: An Overview, 12th Edition. [VitalSource Bookshelf Online].
  • Connolly, T., & Begg, C. (2014). Database Systems: A Practical Approach to Design, Implementation, and Management, 6th Edition. [VitalSource Bookshelf Online].
  • Dietterich, T. G. (2000). Ensemble methods in machine learning. International workshop on multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg.
  • Duignan, B. (2015). Occam’s razor. Encyclopaedia Britannica. Retrieved from https://www.britannica.com/topic/Occams-razor
  • Field, Andy. (2013). Discovering Statistics Using IBM SPSS Statistics, 4th Edition. [VitalSource Bookshelf Online].
  • Gall, M. D., Gall, J. P., Borg, W. R. (2006). Educational Research: An Introduction, 8th Edition. [VitalSource Bookshelf Online].
  • Hubbard, D. W. (2010). How to measure anything: Finding the values of “intangibles” in business. (2nd e.d.) New Jersey, John Wiley & Sons, Inc.
  • Huck, Schuyler W. (2011). Reading Statistics and Research, 6th Edition. [VitalSource Bookshelf Online].
  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.
  • Smith, M. (2015). Statistical analysis handbook. Retrieved from http://www.statsref.com/HTML/index.html?introduction.html
  • Spiegelhalter, D. & Rice, K. (2009) Bayesian statistics. Retrieved from http://www.scholarpedia.org/article/Bayesian_statistics
  • Vandekerckhove, J., Matzke, D., & Wagenmakers, E. J. (2014). Model comparison and the principle of parsimony.
  • Yudkowsky, E.S. (2003). An intuitive explanation of Bayesian reasoning. Retrieved from http://yudkowsky.net/rational/bayes

Adv Quant: Ensemble Classifiers and RandomForests

A discussion on creating ensembles from different methods such as logistic regression, nearest neighbor methods, classification trees, Bayesian, or discriminate analysis and a discussion on the use of RandomForest to do analysis.

Ensembles classifiers can perform better than a single classifier since they are created as a combination of classifiers that have a weight attached to them to properly classify new data points (Bauer & Kohavi, 1999; Dietterich, 2000).  The ensemble classifier can include methods such as:

  • Logistic Regression: multi-variable regression, where one or more independent variables are continuous or categorical which are used to predict a dichotomous/ binary/ categorical dependent variable (Ahlemeyer-Stubbe, & Coleman, 2014; Field, 2013; Gall, Gall, & Borg, 2006; Huck, 2011).
  • Nearest Neighbor Methods: K-nearest neighbor (i.e. K =5) is when a data point is clustered into a group, by having 5 of the nearest neighbors vote on that data point, and it is particularly useful if the data is a binary or categorical (Berson, Smith, & Thearling, 1999).
  • Classification Trees: aid in data abstraction and finding patterns in an intuitive way (Ahlemeyer-Stubbe & Coleman, 2014; Brookshear & Brylow, 2014; Conolly & Begg, 2014) and aid the decision-making process by mapping out all the paths, solutions, or options available for the decision maker to decide upon.
  • Bayesian Analysis: can be reduced to a conditional probability that aims to take into account prior knowledge, but updates itself when new data becomes available (Hubbard, 2010; Smith, 2015; Spiegelhalter & Rice, 2009; Yudkowsky, 2003).
  • Discriminate Analysis: how should data be best separated into several groups based on several independent variables that create the largest separation of the prediction (Ahlemeyer-Stubbe, & Coleman, 2014; Field, 2013).

As mentioned above, the ensemble classifier can create weights for each classifier to help improve the accuracy of the total “ensemble classifier result,” through boosting and bagging procedures.  Boosting procedures help reduce both bias and variance of the different methods, and bagging procedures reduce just the variance of the different methods (Bauer & Kohavi, 1999; Liaw & Wiener, 2002).

  • Boosting: helps boost weak classifying algorithms done serially in systems, to force a reduction in the expected error (Bauer & Kohavi, 1999). The reason why this algorithm is done serially is that the classifier done previously had voted on the variables previously, and that vote is taken into account in this next classifier prediction (Liaw & Wiener, 2002)
  • Bagging (Bootstrap aggregating): assigns values to classifiers which are created from different uniform samples from the training data set with replacement, which is computed in parallel because they don’t depend on other classifiers’ votes to run the next classification prediction (Bauer & Kohavi, 1999; Liaw & Wiener, 2002). This is also known as an averaging method or a random forest (Ahlemeyer-Stubbe & Coleman, 2014).

Random Forest

According to Ahlemeyer-Stubbe and Coleman (2014), random forests are multiple decision trees conducted from selecting multiple random samples from the same data set (either through resampled or disjoint sampling), and the variables that appear more frequently in the forest adds more confidence that this variable has a real influence on the dependent variable.  Liaw and Wiener (2002) affirmed this by stating not only does a variable that frequently appears among many trees in the forest add more confidence in its influence, but also can help determine its proximity to the root node.  Random forests add a new level of randomness to bagging algorithms and is robust against over fitting which is a problem with some decision trees algorithms (Ahlemeyer-Stubbe & Coleman, 2014; Liaw & Wiener, 2002).

The use of random forests is most helpful when relationships between the variables are weak or if there is very little data available (Ahlemeyer-Stubbe and Coleman, 2014).  Also, it is worth considering that the numbers of trees needed to achieve great performance increases as the number of variables under consideration increases (Liaw & Wiener, 2002). To learn how to run random forests algorithms in the statistical programming language R, Liaw and Wiener (2002) shared some of their coding syntax as well as observations on how to effectively meet the objectives.

References:

  • Ahlemeyer-Stubbe, Andrea, Shirley Coleman. (2014). A Practical Guide to Data Mining for Business and Industry, 1st Edition. [VitalSource Bookshelf Online].
  • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning,36(1-2), 105-139.
  • Berson, A. Smith, S. & Thearling K. (1999). Building Data Mining Applications for CRM. McGraw-Hill. Retrieved from http://www.thearling.com/text/dmtechniques/dmtechniques.htm
  • Brookshear, G., & Brylow, D. (2014). Computer Science: An Overview, 12th Edition. [VitalSource Bookshelf Online].
  • Connolly, T., & Begg, C. (2014). Database Systems: A Practical Approach to Design, Implementation, and Management, 6th Edition. [VitalSource Bookshelf Online].
  • Dietterich, T. G. (2000). Ensemble methods in machine learning. International workshop on multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg.
  • Field, Andy. (2013). Discovering Statistics Using IBM SPSS Statistics, 4th Edition. [VitalSource Bookshelf Online].

Adv Quant: Logistic Regression in R

The German credit data contains attributes and outcomes on 1,000 loan applications. The data are available at this Web site, where datasets are provided for the machine learning community.

Introduction

The German credit data contains attributes and outcomes on 1,000 loan applications. The data are available at this Web site, where datasets are provided for the machine learning community.

Results

IP3F1.PNG

Figure 1: Image shows the first six entries in the German credit data.

IP3F2.png

Figure 2: Matrix scatter plot, showing the 2×2 relationships between all the variables within the German credit data.

IP3F3.png

Figure 3: A summary of the credit data with the variables of interest.

IP3F3.png

Figure 4: Shows the entries in the designer matrix which will be used for logistical analysis.

IP3F4

Figure 5: Summarized logistic regression information based on the training data.

IP3F6.1.pngIP3F6.2.png

Figure 6: The coeficients’ confidence interval at the 95% level using log-likelihood vlaues, with values to the right including the standard errors values.

IP3F7.png

Figure 7: Wald Test statistic to test the significance level of the entire ranked variable.

IP3F8.png

Figure 8: The Odds Ratio for each independent variable along with the 95% confidence interval for those odds ratio.

IP3F9.png

Figure 9: Part of the summarized test data set for the logistics regression model.

IP3F10.png

Figure 10: The ROC curve, which illustrates the false positive rate versus the true positive rate of the prediction model.

Discussion

The results from Figure 1 means that the data needs to be formatted before any analysis could be conducted on the data.  Hence, the following lines of code were needed to redefine the variables in the German data set.   Given the data output (Figure 1), the matrix scatter plot (Figure 2) show that duration, amount, and age are continuous variables, while the other five variables are factor variables, which have categorized scatterplots.  Even though installment and default show box plot data in the summary (Figure 3), the data wasn’t factored like history, purpose, or rent, thus it won’t show a count.  From the count data (Figure 3), the ~30% of the purpose of loans are for cars, where as 28% is for TVs.  In this German credit data, about 82% of those asking for credit do not rent and about 53% of borrowers have an ok credit history with 29.3% having a horrible credit history.  The mean average default rate is 30%.

Variables (Figure 5) that have statistical significance at the 0.10 include duration, amount, installment, age, history (per category), rent, and some of the purposes categories.  Though it is preferred to see a large difference in the null deviance and residual deviance, it is still a difference.  The 95% confidence interval for all the logistic regression equation don’t show much spread from their central tendencies (Figure 6).  Thus, the logistic regression model is (from figure 5):

IP3F11.PNG

The odds ratio measures the constant strength of association between the independent and dependent variables (Huck, 2011; Smith, 2015).  This is similar to the correlation coefficient (r) and coefficient of determination (r2) values for linear regression.  According to UCLA: Statistical Consulting Group, (2007), if the P value is less than 0.05, then the overall effect of the ranked term is statistically significant (Figure 7), which in this case the three main terms are.  The odds ratio data (Figure 8) is promising, as values closer to one is desirable for this prediction model (Field, 2013). If the value of the odds ratio is greater than 1, it will show that as the independent variable value increases, so do the odds of the dependent variable (Y = n) occurs increases and vice versa (Fields, 2013).

Moving into the testing phase of the logistics regression model, the 100 value data set needs to be extracted, and the results on whether or not there will be a default or not on the loan are predicted. Comparing the training and the test data sets, the maximum values between the both are not the same for durations and amount of the loan.  All other variables and statistical distributions are similar to each other between the training and the test data.  Thus, the random sampling algorithm in R was effective.

The area underneath the ROC curve (Figure 10), is 0.6994048, which is closer to 0.50 than it is to one, thus this regression does better than pure chance, but it is far from perfect (Alice, 2015).

In conclusion, the regression formula has a 0.699 prediction accuracy, and the purpose, history, and rent ranked categorical variables were statistically significant as a whole.  Therefore, the logistic regression on these eight variables shows more promise in prediction accuracy than pure chance, on who will and will not default on their loan.

Code

#

## The German credit data contains attributes and outcomes on 1,000 loan applications.

##    •   You need to use random selection for 900 cases to train the program, and then the other 100 cases will be used for testing.

##    •   Use duration, amount, installment, and age in this analysis, along with loan history, purpose, and rent.

### ———————————————————————————————————-

## Data source: https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data

## Metadata file: https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.doc

#

#

## Reading the data from source and displaying the top six entries.

#

credits=read.csv(“https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data”, header = F, sep = ” “)

head(credits)

#

## Defining the variables (Taddy, n.d.)

#

default = credits$V21 – 1 # set default true when = 2

duration = credits$V2

amount = credits$V5

installment = credits$V8

age = credits$V13

history = factor(credits$V3, levels = c(“A30”, “A31”, “A32”, “A33”, “A34”))

purpose = factor(credits$V4, levels = c(“A40″,”A41″,”A42″,”A43″,”A44″,”A45″,”A46″,”A48″,”A49″,”A410”))

rent = factor(credits$V15==”A151″) # renting status only

# rent = factor(credits$V15 , levels = c(“A151″,”A152″,”153”)) # full property status

#

## Re-leveling the variables (Taddy, n.d.)

#

levels(history) = c(“great”, “good”, “ok”, “poor”, “horrible”)

levels(purpose) = c(“newcar”, “usedcar”, “furniture/equip”, “radio/TV”, “apps”, “repairs”, “edu”, “retraining”, “biz”, “other”)

# levels(rent) = c(“rent”, “own”, “free”) # full property status

#

## Create a new matrix called “cred” with the 8 defined variables (Taddy, n.d.)

#

credits$default = default

credits$duration= duration

credits$amount  = amount

credits$installment = installment

credits$age     = age

credits$history = history

credits$purpose = purpose

credits$rent    = rent

cred = credits[,c(“default”,”duration”,”amount”,”installment”,”age”,”history”,”purpose”,”rent”)]

#

##  Plotting & reading to make sure the data was transfered correctly into this dataset and present summary stats (Taddy, n.d.)

#

plot(cred)

cred[1:3,]

summary(cred[,])

#

## Create a design matrix, such that factor variables are turned into indicator variables

#

Xcred = model.matrix(default~., data=cred)[,-1]

Xcred[1:3,]

#

## Creating training and prediction datasets: Select 900 rows for esitmation and 100 for testing

#

set.seed(1)

train = sample(1:1000,900)

## Defining which x and y values in the design matrix will be for training and for testing

xtrain = Xcred[train,]

xnew = Xcred[-train,]

ytrain = cred$default[train]

ynew = cred$default[-train]

#

## logistic regresion

#

datas=data.frame(default=ytrain,xtrain)

creditglm=glm(default~., family=binomial, data=datas)

summary(creditglm)

#

## Confidence Intervals (UCLA: Statistical Consulting Group, 2007)

#

confint(creditglm)

confint.default(creditglm)

#

## Overall effect of the rank using the wald.test function from the aod library (UCLA: Statistical Consulting Group, 2007)

#

install.packages(“aod”)

library(aod)

wald.test(b=coef(creditglm), Sigma = vcov(creditglm), Terms = 6:9) # for all ranked terms for history

wald.test(b=coef(creditglm), Sigma = vcov(creditglm), Terms = 10:18) # for all ranked terms for purpose

wald.test(b=coef(creditglm), Sigma = vcov(creditglm), Terms = 19) # for the ranked term for rent

#

## Odds Ratio for model analysis (UCLA: Statistical Consulting Group, 2007)

#

exp(coef(creditglm))

exp(cbind(OR=coef(creditglm), confint(creditglm))) # odds ration next to the 95% confidence interval for odds ratios

#

## Predicting default from the test data (Alice, 2015; UCLA: Statistical Consulting Group., 2007)

#

newdatas=data.frame(default=ynew,xnew)

newestdata=newdatas[,2:19] #removing the variable default from the data matrix

newestdata$defaultPrediction = predict(creditglm, newdata=newestdata, type = “response”)

summary(newdatas)

#

## Plotting the true positive rate against the false positive rate (ROC Curve) (Alice, 2015)

#

install.packages(“ROCR”)

library(ROCR)

pr  = prediction(newestdata$defaultPrediction, newdatas$default)

prf = performance(pr, measure=”tpr”, x.measure=”fpr”)

plot(prf)

## Area under the ROC curve (Alice, 2015)

auc= performance(pr, measure = “auc”)

auc= auc@y.values[[1]]

auc # The closer this value is to 1 the better, much better than to 0.5

 

 

References

Adv Quant: More on Logistic Regression

In assessing the predictive power of categorical predictors of a binary outcome, should logistic regression be used? In other words, how is the logistic function used to predict categorical outcomes?

Logistic regression is another flavor of multi-variable regression, where one or more independent variables are continuous or categorical which are used to predict a dichotomous/ binary/ categorical dependent variable (Ahlemeyer-Stubbe, & Coleman, 2014; Field, 2013; Gall, Gall, & Borg, 2006; Huck, 2011).  Zheng and Agresti (2000) defines predictive power as a measure that helps compare competing regressions via analyzing the importance of the independent variables.  For linear regression and multiple linear regression, the correlation coefficient and coefficient of determination are adequate for predictive power (Field, 2014; Zheng & Agresti, 2000). The more data that is collected could yield a stronger predictive power (Field, 2014).  Predictive power is used to sell the relationships between variables to management (Ahlemeyer-Stubbe, & Coleman, 2014).

For logistic regression, the predictive power of the independent variables can be evaluated by the concept of the odds ratio for each independent variable (Huck, 2011). Field (2013) and Schumacker (2014) explained that when the logistic regression is calculated, the categorical/binary variables are transformed into ln(odds ratio) and a regression is then performed on this newly scaled variable (scale factor seen in equation 1):

eq1.PNG                                                 (1)

Since the probability of one categorical variable varies between 0à0.999…, the odds ratio value can vary between 0 à 999.999… (Schumacker, 2014). If the value of the odds ratio is greater than 1, it will show that as the independent variable value increases, so do the odds of the dependent variable (Y = n) occurs increases and vice versa (Field, 2013). Thus, the odds ratio measures the constant strength of association between the independent and dependent variables (Huck, 2011; Smith, 2015).  Due to this ln(odds ratio) transformation, logistic regression should be used for binary outcomes.

Field (2013) and Schumacker (2014) further explained that given that this ln(odds ratio) transformation needs to be made on the variables; the way to predict categorical outcomes from the regression formula (2),

  eq2.PNG                                            (2)

is best to explained the probability of the categorical outcome value one is trying to calculate:

eq3                                                (3)

The probability equation (3) can be expressed in multiple ways, through typical algebraic manipulations.  Thus, the probability/likelihood of the dependent variable Y is defined between 0-100% and the odds ratio is used to discuss the strength of these relationships.

References

  • Ahlemeyer-Stubbe, Andrea, Shirley Coleman. (2014). A Practical Guide to Data Mining for Business and Industry, 1st Edition. [VitalSource Bookshelf Online].
  • Gall, M. D., Gall, J. P., Borg, W. R. (2006). Educational Research: An Introduction, 8th Edition. [VitalSource Bookshelf Online].
  • Field, Andy. (2013). Discovering Statistics Using IBM SPSS Statistics, 4th Edition. [VitalSource Bookshelf Online].
  • Huck, Schuyler W. (2011). Reading Statistics and Research, 6th Edition. [VitalSource Bookshelf Online].
  • Schumacker, Randall E. (2014). Learning Statistics Using R, 1st Edition. [VitalSource Bookshelf Online].
  • Smith, M. (2015). Statistical analysis handbook. Retrieved from http://www.statsref.com/HTML/index.html?introduction.html
  • Zheng, B. and Agresti, A. (2000) Summarizing the predictive power of a generalized linear model.  Retrieved from http://www.stat.ufl.edu/~aa/articles/zheng_agresti.pdf

Adv Quant: Logistic Vs Linear Regression

A discussion on the assumptions that must be met for logistic regression and assumptions for regular regression that do not apply in logistic regression and on the types of variables used in logistic regression and regular regression.

To generalize the results of the research the insights gained from a sample of data needs to use the correct mathematical procedures for using probabilities and information, statistical inference (Gall et al., 2006; Smith, 2015).  Gall et al. (2006), stated that statistical inference is what dictates the order of procedures, for instance, a hypothesis and a null hypothesis must be defined before a statistical significance level, which also has to be defined before calculating a z or t statistic value. Essentially, a statistical inference allows for quantitative researchers to make inferences about a population.  A population, where researchers must remember where that data was generated and collected from during quantitative research process.  The orders of procedures are important to apply statistical inferences to regressions, if not the prediction formula will not be generalizable.

Logistic regression is another flavor of multi-variable regression, where one or more independent variables are continuous or categorical which are used to predict a dichotomous/ binary/ categorical dependent variable (Ahlemeyer-Stubbe, & Coleman, 2014; Field, 2013; Gall, Gall, & Borg, 2006; Huck, 2011).  Logistic regression is an alternative to linear regression, which assumes all variables are continuous (Ahlemeyer-Stubbe, & Coleman, 2014). Both the multi-variable linear regression and logistic regression formula are (Field, 2013; Schumacker, 2014):

Y = a + b11 + b2X2 + …                                                       (1)

The main difference between these two regressions is that the variables in the equation (1) represent different types of dependent (Y) and independent variables (Xi).  These different types of variables may have to undergo a transformation before the regression analysis begins (Field, 2013; Schumacker 2014).  Due to the difference in the types of variables between logistic and linear regression the assumptions on when to use either regression are also different (Table 1).

Table 1: Discusses and summarizes the types of assumptions and variables used in both logistic and regular regression, created from Ahlemeyer-Stubbe & Coleman (2014), Field (2013), Gall et al. (2006), Huck (2011) and Schumacker, (2014).

 

Assumptions of Logistic Regression Assumptions for Linear Regression
·         Multicollinearity should be minimized between the independent variables

·         There is no need for linearity between the dependent and independent variables

·         Normality only on the continuous independent variables

·         No need for homogeneity of variance within the categorical variables

·         Error terms a not normally distributed

·         Independent variables don’t have to be continuous

·         There are no missing data (no null values)

·         Variance that is not zero

·         Multicollinearity should be minimized between the multiple independent variables

·         Linearity exists between all variables

·         Additivity (for multi-variable linear regression)

·         Errors in the dependent variable and its predicted values are independent and uncorrelated

·         All variables are continuous

·         Normality on all variables

·         Normality on the error values

·         Homogeneity of variance

·         Homoscedasticity- variance between residuals are constant

·         Variance that is not zero

Variable Types of Logistic Regression Variable Types of Linear Regression
·         2 or more Independent variables

·         Independent variables: continuous, dichotomous, binary, or categorical

·         Dependent variable: dichotomous, binary

·         1 or more Independent variables

·         Independent variables: continuous

·         Dependent variables: continuous

References

  • Ahlemeyer-Stubbe, Andrea, Shirley Coleman. (2014). A Practical Guide to Data Mining for Business and Industry, 1st Edition. [VitalSource Bookshelf Online].
  • Gall, M. D., Gall, J. P., Borg, W. R. (2006). Educational Research: An Introduction, 8th Edition. [VitalSource Bookshelf Online].
  • Field, Andy. (2013). Discovering Statistics Using IBM SPSS Statistics, 4th Edition. [VitalSource Bookshelf Online].
  • Huck, Schuyler W. (2011). Reading Statistics and Research, 6th Edition. [VitalSource Bookshelf Online].
  • Schumacker, Randall E. (2014). Learning Statistics Using R, 1st Edition. [VitalSource Bookshelf Online].
  • Smith, M. (2015). Statistical analysis handbook. Retrieved from http://www.statsref.com/HTML/index.html?introduction.html